Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(13): e33409, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39035482

RESUMO

Pateamines, derived from the sponge Mycale hentscheli, function as inhibitors of the RNA helicase eIF4A and exhibit promising antiviral and anticancer properties. eIF4A plays a pivotal role in unwinding stable RNA structures within the 5'-UTR of selected mRNAs, facilitating the binding of the 43S preinitiation complex during translation initiation. Pateamines function by clamping RNA substrates onto the eIF4A surface, effectively preventing eIF4A from carrying out the unwinding step. Rocaglates, a compound class isolated from plants of the genus Aglaia, target the same binding pocket on eIF4A, and based on structural data, a similar mode of action has been proposed for pateamines and rocaglates. In this study, we conducted a detailed characterization of pateamines' binding mode and assessed their antiviral activity against human pathogenic coronaviruses (human coronavirus 229E (HCoV-229E), Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)). Our findings reveal significant differences in the binding behavior of pateamines compared to rocaglates when interacting with an eIF4A-RNA complex. We also observed that pateamines do not depend on the presence of a polypurine tract in the RNA substrate for efficient RNA clamping, as it is the case for rocaglates. Most notably, pateamines demonstrate potent antiviral activity against coronaviruses in the low nanomolar range. Consequently, pateamines broaden our toolbox for combating viruses that rely on the host enzyme eIF4A to conduct their viral protein synthesis, indicating a possible future treatment strategy against new or re-emerging pathogenic viruses.

2.
ACS Med Chem Lett ; 15(5): 602-609, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38746883

RESUMO

In this structure-activity relationship (SAR) study, we report the development of dual inhibitors with antiviral properties targeting the SARS-CoV-2 main protease (Mpro) and human cathepsin L (hCatL). The novel molecules differ in the aliphatic amino acids at the P2 site and the fluorine position on the phenyl ring at the P3 site. The identified dual inhibitors showed Ki values within 1.61 and 10.72 µM against SARS-CoV-2 Mpro; meanwhile, Ki values ranging from 0.004 to 0.701 µM toward hCatL were observed. A great interdependency between the nature of the side chain at the P2 site and the position of the fluorine atom was found. Three dual-targeting inhibitors exhibited antiviral activity in the low micromolar range with CC50 values >100 µM. Docking simulations were executed to gain a deeper understanding of the SAR profile. The findings herein collected should be taken into consideration for the future development of dual SARS-CoV-2 Mpro/hCatL inhibitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA