Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Hum Genet ; 31(11): 1291-1299, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36737541

RESUMO

KiT-GENIE is a monocentric DNA biobank set up to consolidate the very rich and homogeneous DIVAT French cohort of kidney donors and recipients (D/R) in order to explore the molecular factors involved in kidney transplantation outcomes. We collected DNA samples for kidney transplantations performed in Nantes, and we leveraged GWAS genotyping data for securing high-quality genetic data with deep SNP and HLA annotations through imputations and for inferring D/R genetic ancestry. Overall, the biobank included 4217 individuals (n = 1945 D + 2,272 R, including 1969 D/R pairs), 7.4 M SNPs and over 200 clinical variables. KiT-GENIE represents an accurate snapshot of kidney transplantation clinical practice in Nantes between 2002 and 2018, with an enrichment in living kidney donors (17%) and recipients with focal segmental glomerulosclerosis (4%). Recipients were predominantly male (63%), of European ancestry (93%), with a mean age of 51yo and 86% experienced their first graft over the study period. D/R pairs were 93% from European ancestry, and 95% pairs exhibited at least one HLA allelic mismatch. The mean follow-up time was 6.7 years with a hindsight up to 25 years. Recipients experienced biopsy-proven rejection and graft loss for 16.6% and 21.3%, respectively. KiT-GENIE constitutes one of the largest kidney transplantation genetic cohorts worldwide to date. It includes homogeneous high-quality clinical and genetic data for donors and recipients, hence offering a unique opportunity to investigate immunogenetic and genetic factors, as well as donor-recipient interactions and mismatches involved in rejection, graft survival, primary disease recurrence and other comorbidities.


Assuntos
Transplante de Rim , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Bancos de Espécimes Biológicos , Doadores Vivos , Sobrevivência de Enxerto/genética , DNA
2.
J Immunol ; 207(2): 421-435, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34233909

RESUMO

Intracellular ion fluxes emerge as critical actors of immunoregulation but still remain poorly explored. In this study, we investigated the role of the redundant cation channels TMEM176A and TMEM176B (TMEM176A/B) in retinoic acid-related orphan receptor γt+ cells and conventional dendritic cells (DCs) using germline and conditional double knockout mice. Although Tmem176a/b appeared surprisingly dispensable for the protective function of Th17 and group 3 innate lymphoid cells in the intestinal mucosa, we found that they were required in conventional DCs for optimal Ag processing and presentation to CD4+ T cells. Using a real-time imaging method, we show that TMEM176A/B accumulate in dynamic post-Golgi vesicles preferentially linked to the late endolysosomal system and strongly colocalize with HLA-DM. Taken together, our results suggest that TMEM176A/B ion channels play a direct role in the MHC class II compartment of DCs for the fine regulation of Ag presentation and naive CD4+ T cell priming.


Assuntos
Apresentação de Antígeno/imunologia , Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Proteínas de Membrana/imunologia , Animais , Endossomos/imunologia , Feminino , Genes MHC da Classe II/imunologia , Complexo de Golgi/imunologia , Imunidade Inata/imunologia , Mucosa Intestinal/imunologia , Canais Iônicos/imunologia , Linfócitos/imunologia , Lisossomos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Th17/imunologia , Tretinoína/imunologia
3.
Cancer Sci ; 112(5): 1723-1734, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33609296

RESUMO

T cells could be engineered to overcome the aberrant metabolic milieu of solid tumors and tip the balance in favor of a long-lasting clinical response. Here, we explored the therapeutic potential of stably overexpressing cystathionine-gamma-lyase (CTH, CSE, or cystathionase), a pivotal enzyme of the transsulfuration pathway, in antitumor CD8+ T cells with the initial aim to boost intrinsic cysteine metabolism. Using a mouse model of adoptive cell transfer (ACT), we found that CTH-expressing T cells showed a superior control of tumor growth compared to control T cells. However, contrary to our hypothesis, this effect was not associated with increased T cell expansion in vivo or proliferation rescue in the absence of cysteine/cystine in vitro. Rather than impacting methionine or cysteine, ACT with CTH overexpression unexpectedly reduced glycine, serine, and proline concentration within the tumor interstitial fluid. Interestingly, in vitro tumor cell growth was mostly impacted by the combination of serine/proline or serine/glycine deprivation. These results suggest that metabolic gene engineering of T cells could be further investigated to locally modulate amino acid availability within the tumor environment while avoiding systemic toxicity.


Assuntos
Transferência Adotiva/métodos , Linfócitos T CD8-Positivos/metabolismo , Cistationina gama-Liase/metabolismo , Cisteína/biossíntese , Animais , Engenharia Celular , Linhagem Celular Tumoral , Proliferação de Células , Líquido Extracelular/metabolismo , Feminino , Glicina/metabolismo , Metionina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Neoplasias Ovarianas/terapia , Prolina/metabolismo , Serina/metabolismo , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...