Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSystems ; 6(3)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33975972

RESUMO

Legume plants can form root organs called nodules where they house intracellular symbiotic rhizobium bacteria. Within nodule cells, rhizobia differentiate into bacteroids, which fix nitrogen for the benefit of the plant. Depending on the combination of host plants and rhizobial strains, the output of rhizobium-legume interactions varies from nonfixing associations to symbioses that are highly beneficial for the plant. Bradyrhizobium diazoefficiens USDA110 was isolated as a soybean symbiont, but it can also establish a functional symbiotic interaction with Aeschynomene afraspera In contrast to soybean, A. afraspera triggers terminal bacteroid differentiation, a process involving bacterial cell elongation, polyploidy, and increased membrane permeability, leading to a loss of bacterial viability while plants increase their symbiotic benefit. A combination of plant metabolomics, bacterial proteomics, and transcriptomics along with cytological analyses were used to study the physiology of USDA110 bacteroids in these two host plants. We show that USDA110 establishes a poorly efficient symbiosis with A. afraspera despite the full activation of the bacterial symbiotic program. We found molecular signatures of high levels of stress in A. afraspera bacteroids, whereas those of terminal bacteroid differentiation were only partially activated. Finally, we show that in A. afraspera, USDA110 bacteroids undergo atypical terminal differentiation hallmarked by the disconnection of the canonical features of this process. This study pinpoints how a rhizobium strain can adapt its physiology to a new host and cope with terminal differentiation when it did not coevolve with such a host.IMPORTANCE Legume-rhizobium symbiosis is a major ecological process in the nitrogen cycle, responsible for the main input of fixed nitrogen into the biosphere. The efficiency of this symbiosis relies on the coevolution of the partners. Some, but not all, legume plants optimize their return on investment in the symbiosis by imposing on their microsymbionts a terminal differentiation program that increases their symbiotic efficiency but imposes a high level of stress and drastically reduces their viability. We combined multi-omics with physiological analyses to show that the symbiotic couple formed by Bradyrhizobium diazoefficiens USDA110 and Aeschynomene afraspera, in which the host and symbiont did not evolve together, is functional but displays a low symbiotic efficiency associated with a disconnection of terminal bacteroid differentiation features.

2.
Science ; 372(6544): 864-868, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34016782

RESUMO

Symbiosis with arbuscular mycorrhizal fungi (AMF) improves plant nutrition in most land plants, and its contribution to the colonization of land by plants has been hypothesized. Here, we identify a conserved transcriptomic response to AMF among land plants, including the activation of lipid metabolism. Using gain of function, we show the transfer of lipids from the liverwort Marchantia paleacea to AMF and its direct regulation by the transcription factor WRINKLED (WRI). Arbuscules, the nutrient-exchange structures, were not formed in loss-of-function wri mutants in M. paleacea, leading to aborted mutualism. Our results show the orthology of the symbiotic transfer of lipids across land plants and demonstrate that mutualism with arbuscular mycorrhizal fungi was present in the most recent ancestor of land plants 450 million years ago.


Assuntos
Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Marchantia/genética , Marchantia/metabolismo , Micorrizas/metabolismo , Proteínas de Plantas/metabolismo , Simbiose , Fatores de Transcrição/metabolismo , Transporte Biológico , Ácidos Graxos/biossíntese , Ácidos Graxos/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Marchantia/microbiologia , Mutação , Proteínas de Plantas/genética , Fatores de Transcrição/genética
4.
Sci Data ; 7(1): 324, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33020495

RESUMO

Root-knot nematodes (genus Meloidogyne) are plant parasites causing huge economic loss in the agricultural industry and affecting severely numerous developing countries. Control methods against these plant pests are sparse, the preferred one being the deployment of plant cultivars bearing resistance genes against Meloidogyne species. However, M. enterolobii is not controlled by the resistance genes deployed in the crop plants cultivated in Europe. The recent identification of this species in Europe is thus a major concern. Here, we sequenced the genome of M. enterolobii using short and long-read technologies. The genome assembly spans 240 Mbp with contig N50 size of 143 kbp, enabling high-quality annotations of 59,773 coding genes, 4,068 non-coding genes, and 10,944 transposable elements (spanning 8.7% of the genome). We validated the genome size by flow cytometry and the structure, quality and completeness by bioinformatics metrics. This ensemble of resources will fuel future projects aiming at pinpointing the genome singularities, the origin, diversity, and adaptive potential of this emerging plant pest.


Assuntos
Genoma Helmíntico , Tylenchoidea/genética , Animais , Europa (Continente) , Doenças das Plantas/parasitologia
5.
Genome Biol ; 21(1): 223, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32892750

RESUMO

BACKGROUND: A key step in domestication of the grapevine was the transition from separate sexes (dioecy) in wild Vitis vinifera ssp. sylvestris (V. sylvestris) to hermaphroditism in cultivated Vitis vinifera ssp. sativa (V. vinifera). It is known that V. sylvestris has an XY system and V. vinifera a modified Y haplotype (Yh) and that the sex locus is small, but it has not previously been precisely characterized. RESULTS: We generate a high-quality de novo reference genome for V. sylvestris, onto which we map whole-genome re-sequencing data of a cross to locate the sex locus. Assembly of the full X, Y, and Yh haplotypes of V. sylvestris and V. vinifera sex locus and examining their gene content and expression profiles during flower development in wild and cultivated accessions show that truncation and deletion of tapetum and pollen development genes on the X haplotype likely causes male sterility, while the upregulation of a Y allele of a cytokinin regulator (APRT3) may cause female sterility. The downregulation of this cytokinin regulator in the Yh haplotype may be sufficient to trigger reversal to hermaphroditism. Molecular dating of X and Y haplotypes is consistent with the sex locus being as old as the Vitis genus, but the mechanism by which recombination was suppressed remains undetermined. CONCLUSIONS: We describe the genomic and evolutionary characterization of the sex locus of cultivated and wild grapevine, providing a coherent model of sex determination in the latter and for transition from dioecy to hermaphroditism during domestication.


Assuntos
Domesticação , Genoma de Planta , Processos de Determinação Sexual , Vitis/genética , Haplótipos , Infertilidade das Plantas/genética , Sequenciamento Completo do Genoma
6.
Nat Commun ; 11(1): 492, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980615

RESUMO

White lupin (Lupinus albus L.) is an annual crop cultivated for its protein-rich seeds. It is adapted to poor soils due to the production of cluster roots, which are made of dozens of determinate lateral roots that drastically improve soil exploration and nutrient acquisition (mostly phosphate). Using long-read sequencing technologies, we provide a high-quality genome sequence of a cultivated accession of white lupin (2n = 50, 451 Mb), as well as de novo assemblies of a landrace and a wild relative. We describe a modern accession displaying increased soil exploration capacity through early establishment of lateral and cluster roots. We also show how seed quality may have been impacted by domestication in term of protein profiles and alkaloid content. The availability of a high-quality genome assembly together with companion genomic and transcriptomic resources will enable the development of modern breeding strategies to increase and stabilize white lupin yield.


Assuntos
Genoma de Planta , Lupinus/genética , Sementes/fisiologia , Análise de Sequência de DNA , Solo , Alcaloides/química , Alcaloides/metabolismo , Centrômero/genética , Ecótipo , Evolução Molecular , Dosagem de Genes , Duplicação Gênica , Variação Genética , Variação Estrutural do Genoma , Lupinus/crescimento & desenvolvimento , Modelos Genéticos , Anotação de Sequência Molecular , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único/genética , Sequências Repetitivas de Ácido Nucleico/genética , Sintenia/genética , Transcriptoma/genética
7.
Methods Mol Biol ; 1962: 97-120, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31020556

RESUMO

EuGene is an integrative gene finder applicable to both prokaryotic and eukaryotic genomes. EuGene annotated its first genome in 1999. Starting from genomic DNA sequences representing a complete genome, EuGene is able to predict the major transcript units in the genome from a variety of sources of information: statistical information, similarities with known transcripts and proteins, but also any GFF3 structured information supporting the presence or absence of specific types of elements. EuGene has been used to find genes in the plants Arabidopsis thaliana, Medicago truncatula, and Theobroma cacao; tomato, sunflower, and Rosa genomes; and in the nematode Meloidogyne incognita genome, among many others. The large fraction of plant in this list probably influenced EuGene development, especially in its capacities to withstand a genome with a large number of repeated regions and transposable elements.Depending on the sources of information used for prediction, EuGene can be considered as purely ab initio, purely similarity based, or hybrid. With the general availability of NGS-transcribed sequence data in genome projects, EuGene adopts a default hybrid behavior that strongly relies on similarity information. Initially targeted at eukaryotic genomes, EuGene has also been extended to offer integrative gene prediction for bacteria, allowing for richer and robust predictions than either purely statistical or homology-based prokaryotic gene finders.This text has been written as a practical guide that will give you the capacity to train and execute EuGene on your favorite eukaryotic genome. As the prokaryotic case is simpler and has already been described, only the main differences with the eukaryotic version were reported.


Assuntos
Biologia Computacional/métodos , Células Eucarióticas , Células Procarióticas , Software , Arabidopsis/genética , Bases de Dados Genéticas , Internet , Aprendizado de Máquina , Modelos Estatísticos , Anotação de Sequência Molecular , Plantas/genética , Proteoma/genética , Sítios de Splice de RNA , RNA não Traduzido , Transcriptoma , Navegador
8.
Nat Plants ; 4(12): 1017-1025, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30397259

RESUMO

Advances in deciphering the functional architecture of eukaryotic genomes have been facilitated by recent breakthroughs in sequencing technologies, enabling a more comprehensive representation of genes and repeat elements in genome sequence assemblies, as well as more sensitive and tissue-specific analyses of gene expression. Here we show that PacBio sequencing has led to a substantially improved genome assembly of Medicago truncatula A17, a legume model species notable for endosymbiosis studies1, and has enabled the identification of genome rearrangements between genotypes at a near-base-pair resolution. Annotation of the new M. truncatula genome sequence has allowed for a thorough analysis of transposable elements and their dynamics, as well as the identification of new players involved in symbiotic nodule development, in particular 1,037 upregulated long non-coding RNAs (lncRNAs). We have also discovered that a substantial proportion (~35% and 38%, respectively) of the genes upregulated in nodules or expressed in the nodule differentiation zone colocalize in genomic clusters (270 and 211, respectively), here termed symbiotic islands. These islands contain numerous expressed lncRNA genes and display differentially both DNA methylation and histone marks. Epigenetic regulations and lncRNAs are therefore attractive candidate elements for the orchestration of symbiotic gene expression in the M. truncatula genome.


Assuntos
Epigênese Genética , Genoma de Planta/genética , Medicago truncatula/genética , RNA não Traduzido/genética , Simbiose/genética , Metilação de DNA , Regulação da Expressão Gênica de Plantas , Genômica , Família Multigênica , Proteínas de Plantas/genética , RNA de Plantas/genética , Nódulos Radiculares de Plantas/genética
9.
PLoS Genet ; 13(6): e1006777, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28594822

RESUMO

Root-knot nematodes (genus Meloidogyne) exhibit a diversity of reproductive modes ranging from obligatory sexual to fully asexual reproduction. Intriguingly, the most widespread and devastating species to global agriculture are those that reproduce asexually, without meiosis. To disentangle this surprising parasitic success despite the absence of sex and genetic exchanges, we have sequenced and assembled the genomes of three obligatory ameiotic and asexual Meloidogyne. We have compared them to those of relatives able to perform meiosis and sexual reproduction. We show that the genomes of ameiotic asexual Meloidogyne are large, polyploid and made of duplicated regions with a high within-species average nucleotide divergence of ~8%. Phylogenomic analysis of the genes present in these duplicated regions suggests that they originated from multiple hybridization events and are thus homoeologs. We found that up to 22% of homoeologous gene pairs were under positive selection and these genes covered a wide spectrum of predicted functional categories. To biologically assess functional divergence, we compared expression patterns of homoeologous gene pairs across developmental life stages using an RNAseq approach in the most economically important asexually-reproducing nematode. We showed that >60% of homoeologous gene pairs display diverged expression patterns. These results suggest a substantial functional impact of the genome structure. Contrasting with high within-species nuclear genome divergence, mitochondrial genome divergence between the three ameiotic asexuals was very low, signifying that these putative hybrids share a recent common maternal ancestor. Transposable elements (TE) cover a ~1.7 times higher proportion of the genomes of the ameiotic asexual Meloidogyne compared to the sexual relative and might also participate in their plasticity. The intriguing parasitic success of asexually-reproducing Meloidogyne species could be partly explained by their TE-rich composite genomes, resulting from allopolyploidization events, and promoting plasticity and functional divergence between gene copies in the absence of sex and meiosis.


Assuntos
Variação Genética , Genoma Helmíntico , Hibridização Genética , Poliploidia , Reprodução Assexuada , Tylenchoidea/genética , Animais , Elementos de DNA Transponíveis , Genoma Mitocondrial , Polimorfismo Genético , Seleção Genética
10.
BMC Genomics ; 18(1): 483, 2017 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-28651633

RESUMO

BACKGROUND: The 15 sibling species of the Paramecium aurelia cryptic species complex emerged after a whole genome duplication that occurred tens of millions of years ago. Given extensive knowledge of the genetics and epigenetics of Paramecium acquired over the last century, this species complex offers a uniquely powerful system to investigate the consequences of whole genome duplication in a unicellular eukaryote as well as the genetic and epigenetic mechanisms that drive speciation. High quality Paramecium gene models are important for research using this system. The major aim of the work reported here was to build an improved gene annotation pipeline for the Paramecium lineage. RESULTS: We generated oriented RNA-Seq transcriptome data across the sexual process of autogamy for the model species Paramecium tetraurelia. We determined, for the first time in a ciliate, candidate P. tetraurelia transcription start sites using an adapted Cap-Seq protocol. We developed TrUC, multi-threaded Perl software that in conjunction with TopHat mapping of RNA-Seq data to a reference genome, predicts transcription units for the annotation pipeline. We used EuGene software to combine annotation evidence. The high quality gene structural annotations obtained for P. tetraurelia were used as evidence to improve published annotations for 3 other Paramecium species. The RNA-Seq data were also used for differential gene expression analysis, providing a gene expression atlas that is more sensitive than the previously established microarray resource. CONCLUSIONS: We have developed a gene annotation pipeline tailored for the compact genomes and tiny introns of Paramecium species. A novel component of this pipeline, TrUC, predicts transcription units using Cap-Seq and oriented RNA-Seq data. TrUC could prove useful beyond Paramecium, especially in the case of high gene density. Accurate predictions of 3' and 5' UTR will be particularly valuable for studies of gene expression (e.g. nucleosome positioning, identification of cis regulatory motifs). The P. tetraurelia improved transcriptome resource, gene annotations for P. tetraurelia, P. biaurelia, P. sexaurelia and P. caudatum, and Paramecium-trained EuGene configuration are available through ParameciumDB ( http://paramecium.i2bc.paris-saclay.fr ). TrUC software is freely distributed under a GNU GPL v3 licence ( https://github.com/oarnaiz/TrUC ).


Assuntos
Perfilação da Expressão Gênica/métodos , Genômica/métodos , Anotação de Sequência Molecular/métodos , Paramecium/genética , Análise de Sequência de RNA
11.
Nature ; 546(7656): 148-152, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28538728

RESUMO

The domesticated sunflower, Helianthus annuus L., is a global oil crop that has promise for climate change adaptation, because it can maintain stable yields across a wide variety of environmental conditions, including drought. Even greater resilience is achievable through the mining of resistance alleles from compatible wild sunflower relatives, including numerous extremophile species. Here we report a high-quality reference for the sunflower genome (3.6 gigabases), together with extensive transcriptomic data from vegetative and floral organs. The genome mostly consists of highly similar, related sequences and required single-molecule real-time sequencing technologies for successful assembly. Genome analyses enabled the reconstruction of the evolutionary history of the Asterids, further establishing the existence of a whole-genome triplication at the base of the Asterids II clade and a sunflower-specific whole-genome duplication around 29 million years ago. An integrative approach combining quantitative genetics, expression and diversity data permitted development of comprehensive gene networks for two major breeding traits, flowering time and oil metabolism, and revealed new candidate genes in these networks. We found that the genomic architecture of flowering time has been shaped by the most recent whole-genome duplication, which suggests that ancient paralogues can remain in the same regulatory networks for dozens of millions of years. This genome represents a cornerstone for future research programs aiming to exploit genetic diversity to improve biotic and abiotic stress resistance and oil production, while also considering agricultural constraints and human nutritional needs.


Assuntos
Evolução Molecular , Flores/genética , Flores/fisiologia , Genoma de Planta/genética , Helianthus/genética , Helianthus/metabolismo , Óleos de Plantas/metabolismo , Aclimatação/genética , Duplicação Gênica/genética , Regulação da Expressão Gênica de Plantas , Variação Genética , Genômica , Helianthus/classificação , Análise de Sequência de DNA , Estresse Fisiológico/genética , Óleo de Girassol , Transcriptoma/genética
12.
Nat Plants ; 2(11): 16166, 2016 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-27797357

RESUMO

The legume-Rhizobium symbiosis leads to the formation of a new organ, the root nodule, involving coordinated and massive induction of specific genes. Several genes controlling DNA methylation are spatially regulated within the Medicago truncatula nodule, notably the demethylase gene, DEMETER (DME), which is mostly expressed in the differentiation zone. Here, we show that MtDME is essential for nodule development and regulates the expression of 1,425 genes, some of which are critical for plant and bacterial cell differentiation. Bisulphite sequencing coupled to genomic capture enabled the identification of 474 regions that are differentially methylated during nodule development, including nodule-specific cysteine-rich peptide genes. Decreasing DME expression by RNA interference led to hypermethylation and concomitant downregulation of 400 genes, most of them associated with nodule differentiation. Massive reprogramming of gene expression through DNA demethylation is a new epigenetic mechanism controlling a key stage of indeterminate nodule organogenesis during symbiotic interactions.


Assuntos
Metilação de DNA , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/genética , Proteínas de Plantas/genética , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/genética , Simbiose
13.
Plant Physiol ; 171(3): 2256-76, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27217496

RESUMO

Nod factors (NFs) are lipochitooligosaccharidic signal molecules produced by rhizobia, which play a key role in the rhizobium-legume symbiotic interaction. In this study, we analyzed the gene expression reprogramming induced by purified NF (4 and 24 h of treatment) in the root epidermis of the model legume Medicago truncatula Tissue-specific transcriptome analysis was achieved by laser-capture microdissection coupled to high-depth RNA sequencing. The expression of 17,191 genes was detected in the epidermis, among which 1,070 were found to be regulated by NF addition, including previously characterized NF-induced marker genes. Many genes exhibited strong levels of transcriptional activation, sometimes only transiently at 4 h, indicating highly dynamic regulation. Expression reprogramming affected a variety of cellular processes, including perception, signaling, regulation of gene expression, as well as cell wall, cytoskeleton, transport, metabolism, and defense, with numerous NF-induced genes never identified before. Strikingly, early epidermal activation of cytokinin (CK) pathways was indicated, based on the induction of CK metabolic and signaling genes, including the CRE1 receptor essential to promote nodulation. These transcriptional activations were independently validated using promoter:ß-glucuronidase fusions with the MtCRE1 CK receptor gene and a CK response reporter (TWO COMPONENT SIGNALING SENSOR NEW). A CK pretreatment reduced the NF induction of the EARLY NODULIN11 (ENOD11) symbiotic marker, while a CK-degrading enzyme (CYTOKININ OXIDASE/DEHYDROGENASE3) ectopically expressed in the root epidermis led to increased NF induction of ENOD11 and nodulation. Therefore, CK may play both positive and negative roles in M. truncatula nodulation.


Assuntos
Citocininas/metabolismo , Lipopolissacarídeos/metabolismo , Medicago truncatula/metabolismo , Epiderme Vegetal/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Lasers , Lipopolissacarídeos/farmacologia , Medicago truncatula/genética , Epiderme Vegetal/efeitos dos fármacos , Epiderme Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Análise de Sequência de RNA/métodos , Transdução de Sinais
14.
PLoS One ; 11(2): e0148513, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26845339

RESUMO

The obligate biotroph oomycete Plasmopara halstedii causes downy mildew on sunflower crop, Helianthus annuus. The breakdown of several Pl resistance genes used in sunflower hybrids over the last 25 years came along with the appearance of new Pl. halstedii isolates showing modified virulence profiles. In oomycetes, two classes of effector proteins, key players of pathogen virulence, are translocated into the host: RXLR and CRN effectors. We identified 54 putative CRN or RXLR effector genes from transcriptomic data and analyzed their genetic diversity in seven Pl. halstedii pathotypes representative of the species variability. Pl. halstedii effector genes were on average more polymorphic at both the nucleic and protein levels than random non-effector genes, suggesting a potential adaptive dynamics of pathogen virulence over the last 25 years. Twenty-two KASP (Competitive Allele Specific PCR) markers designed on polymorphic effector genes were genotyped on 35 isolates belonging to 14 Pl. halstedii pathotypes. Polymorphism analysis based on eight KASP markers aims at proposing a determination key suitable to classify the eight multi-isolate pathotypes into six groups. This is the first report of a molecular marker set able to discriminate Pl. halstedii pathotypes based on the polymorphism of pathogenicity effectors. Compared to phenotypic tests handling living spores used until now to discriminate Pl. halstedii pathotypes, this set of molecular markers constitutes a first step in faster pathotype diagnosis of Pl. halstedii isolates. Hence, emerging sunflower downy mildew isolates could be more rapidly characterized and thus, assessment of plant resistance breakdown under field conditions should be improved.


Assuntos
Helianthus/microbiologia , Oomicetos/genética , Polimorfismo Genético , Alelos , Marcadores Genéticos , Predisposição Genética para Doença , Genótipo , Oomicetos/classificação , Oomicetos/isolamento & purificação , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Virulência/genética
15.
Curr Biol ; 25(19): 2562-9, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26412136

RESUMO

Domestication is an excellent model for studies of adaptation because it involves recent and strong selection on a few, identified traits [1-5]. Few studies have focused on the domestication of fungi, with notable exceptions [6-11], despite their importance to bioindustry [12] and to a general understanding of adaptation in eukaryotes [5]. Penicillium fungi are ubiquitous molds among which two distantly related species have been independently selected for cheese making-P. roqueforti for blue cheeses like Roquefort and P. camemberti for soft cheeses like Camembert. The selected traits include morphology, aromatic profile, lipolytic and proteolytic activities, and ability to grow at low temperatures, in a matrix containing bacterial and fungal competitors [13-15]. By comparing the genomes of ten Penicillium species, we show that adaptation to cheese was associated with multiple recent horizontal transfers of large genomic regions carrying crucial metabolic genes. We identified seven horizontally transferred regions (HTRs) spanning more than 10 kb each, flanked by specific transposable elements, and displaying nearly 100% identity between distant Penicillium species. Two HTRs carried genes with functions involved in the utilization of cheese nutrients or competition and were found nearly identical in multiple strains and species of cheese-associated Penicillium fungi, indicating recent selective sweeps; they were experimentally associated with faster growth and greater competitiveness on cheese and contained genes highly expressed in the early stage of cheese maturation. These findings have industrial and food safety implications and improve our understanding of the processes of adaptation to rapid environmental changes.


Assuntos
Queijo/microbiologia , Fungos/genética , Transferência Genética Horizontal , Adaptação Biológica/fisiologia , DNA Fúngico/metabolismo , Microbiologia de Alimentos , Penicillium/metabolismo , Fenótipo
16.
Genome Biol ; 15(9): 457, 2014 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-25248950

RESUMO

BACKGROUND: Legume roots show a remarkable plasticity to adapt their architecture to biotic and abiotic constraints, including symbiotic interactions. However, global analysis of miRNA regulation in roots is limited, and a global view of the evolution of miRNA-mediated diversification in different ecotypes is lacking. RESULTS: In the model legume Medicago truncatula, we analyze the small RNA transcriptome of roots submitted to symbiotic and pathogenic interactions. Genome mapping and a computational pipeline identify 416 miRNA candidates, including known and novel variants of 78 miRNA families present in miRBase. Stringent criteria of pre-miRNA prediction yield 52 new mtr-miRNAs, including 27 miRtrons. Analyzing miRNA precursor polymorphisms in 26 M. truncatula ecotypes identifies higher sequence polymorphism in conserved rather than Medicago-specific miRNA precursors. An average of 19 targets, mainly involved in environmental responses and signalling, is predicted per novel miRNA. We identify miRNAs responsive to bacterial and fungal pathogens or symbionts as well as their related Nod and Myc-LCO symbiotic signals. Network analyses reveal modules of new and conserved co-expressed miRNAs that regulate distinct sets of targets, highlighting potential miRNA-regulated biological pathways relevant to pathogenic and symbiotic interactions. CONCLUSIONS: We identify 52 novel genuine miRNAs and large plasticity of the root miRNAome in response to the environment, and also in response to purified Myc/Nod signaling molecules. The new miRNAs identified and their sequence variation across M. truncatula ecotypes may be crucial to understand the adaptation of root growth to the soil environment, notably in the agriculturally important legume crops.


Assuntos
Medicago truncatula/genética , MicroRNAs/genética , Raízes de Plantas/genética , RNA de Plantas/genética , Sequência Conservada , Regulação da Expressão Gênica de Plantas , Interação Gene-Ambiente , Genes de Plantas , Medicago truncatula/metabolismo , MicroRNAs/metabolismo , Anotação de Sequência Molecular , Raízes de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , RNA de Plantas/metabolismo , Transdução de Sinais , Estresse Fisiológico , Transcriptoma
17.
Plant Biotechnol J ; 12(9): 1308-18, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25060922

RESUMO

RNA-dependent RNA polymerase 6 (RDR6) and suppressor of gene silencing 3 (SGS3) act together in post-transcriptional transgene silencing mediated by small interfering RNAs (siRNAs) and in biogenesis of various endogenous siRNAs including the tasiARFs, known regulators of auxin responses and plant development. Legumes, the third major crop family worldwide, has been widely improved through transgenic approaches. Here, we isolated rdr6 and sgs3 mutants in the model legume Medicago truncatula. Two sgs3 and one rdr6 alleles led to strong developmental defects and impaired biogenesis of tasiARFs. In contrast, the rdr6.1 homozygous plants produced sufficient amounts of tasiARFs to ensure proper development. High throughput sequencing of small RNAs from this specific mutant identified 354 potential MtRDR6 substrates, for which siRNA production was significantly reduced in the mutant. Among them, we found a large variety of novel phased loci corresponding to protein-encoding genes or transposable elements. Interestingly, measurement of GFP expression revealed that post-transcriptional transgene silencing was reduced in rdr6.1 roots. Hence, this novel mis-sense mutation, affecting a highly conserved amino acid residue in plant RDR6s, may be an interesting tool both to analyse endogenous pha-siRNA functions and to improve transgene expression, at least in legume species.


Assuntos
Alelos , Inativação Gênica , Medicago truncatula/genética , Desenvolvimento Vegetal/genética , RNA Interferente Pequeno/biossíntese , RNA Polimerase Dependente de RNA/genética , Transgenes/genética , Loci Gênicos , Medicago truncatula/crescimento & desenvolvimento , Mutação/genética , Fenótipo , Proteínas de Plantas/genética , Transcrição Gênica
18.
Bioinformatics ; 30(18): 2659-61, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24880686

RESUMO

UNLABELLED: It is now easy and increasingly usual to produce oriented RNA-Seq data as a prokaryotic genome is being sequenced. However, this information is usually just used for expression quantification. EuGene-PP is a fully automated pipeline for structural annotation of prokaryotic genomes integrating protein similarities, statistical information and any oriented expression information (RNA-Seq or tiling arrays) through a variety of file formats to produce a qualitatively enriched annotation including coding regions but also (possibly antisense) non-coding genes and transcription start sites. AVAILABILITY AND IMPLEMENTATION: EuGene-PP is an open-source software based on EuGene-P integrating a Galaxy configuration. EuGene-PP can be downloaded at eugene.toulouse.inra.fr.


Assuntos
Bactérias/genética , Genoma Bacteriano/genética , Genômica/métodos , Anotação de Sequência Molecular/métodos , Software , Automação , Análise de Sequência de RNA , Sítio de Iniciação de Transcrição
19.
Plant J ; 77(6): 817-37, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24483147

RESUMO

Rhizobium-induced root nodules are specialized organs for symbiotic nitrogen fixation. Indeterminate-type nodules are formed from an apical meristem and exhibit a spatial zonation which corresponds to successive developmental stages. To get a dynamic and integrated view of plant and bacterial gene expression associated with nodule development, we used a sensitive and comprehensive approach based upon oriented high-depth RNA sequencing coupled to laser microdissection of nodule regions. This study, focused on the association between the model legume Medicago truncatula and its symbiont Sinorhizobium meliloti, led to the production of 942 million sequencing read pairs that were unambiguously mapped on plant and bacterial genomes. Bioinformatic and statistical analyses enabled in-depth comparison, at a whole-genome level, of gene expression in specific nodule zones. Previously characterized symbiotic genes displayed the expected spatial pattern of expression, thus validating the robustness of our approach. We illustrate the use of this resource by examining gene expression associated with three essential elements of nodule development, namely meristem activity, cell differentiation and selected signaling processes related to bacterial Nod factors and redox status. We found that transcription factor genes essential for the control of the root apical meristem were also expressed in the nodule meristem, while the plant mRNAs most enriched in nodules compared with roots were mostly associated with zones comprising both plant and bacterial partners. The data, accessible on a dedicated website, represent a rich resource for microbiologists and plant biologists to address a variety of questions of both fundamental and applied interest.


Assuntos
Regulação da Expressão Gênica de Plantas , Microdissecção e Captura a Laser/métodos , Medicago truncatula/genética , Análise de Sequência de RNA/métodos , Sinorhizobium meliloti/genética , Expressão Gênica , Perfilação da Expressão Gênica , Genes Bacterianos/genética , Medicago truncatula/citologia , Meristema/genética , Fixação de Nitrogênio , Raízes de Plantas/genética , Nódulos Radiculares de Plantas/genética , Sinorhizobium meliloti/citologia , Simbiose
20.
Nat Commun ; 5: 2876, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24407037

RESUMO

While the extent and impact of horizontal transfers in prokaryotes are widely acknowledged, their importance to the eukaryotic kingdom is unclear and thought by many to be anecdotal. Here we report multiple recent transfers of a huge genomic island between Penicillium spp. found in the food environment. Sequencing of the two leading filamentous fungi used in cheese making, P. roqueforti and P. camemberti, and comparison with the penicillin producer P. rubens reveals a 575 kb long genomic island in P. roqueforti--called Wallaby--present as identical fragments at non-homologous loci in P. camemberti and P. rubens. Wallaby is detected in Penicillium collections exclusively in strains from food environments. Wallaby encompasses about 250 predicted genes, some of which are probably involved in competition with microorganisms. The occurrence of multiple recent eukaryotic transfers in the food environment provides strong evidence for the importance of this understudied and probably underestimated phenomenon in eukaryotes.


Assuntos
DNA Fúngico/genética , Transferência Genética Horizontal/genética , Ilhas Genômicas/genética , Penicillium/genética , Sequência de Bases , Queijo , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...