Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 8176, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39289358

RESUMO

The Claustrum/dorsal endopiriform cortex complex (CLA) is an enigmatic brain region with extensive glutamatergic projections to multiple cortical areas. The transcription factor Nurr1 is highly expressed in the CLA, but its role in this region is not understood. By using conditional gene-targeted mice, we show that Nurr1 is a crucial regulator of CLA neuron identity. Although CLA neurons remain intact in the absence of Nurr1, the distinctive gene expression pattern in the CLA is abolished. CLA has been hypothesized to control hallucinations, but little is known of how the CLA responds to hallucinogens. After the deletion of Nurr1 in the CLA, both hallucinogen receptor expression and signaling are lost. Furthermore, functional ultrasound and Neuropixel electrophysiological recordings revealed that the hallucinogenic-receptor agonists' effects on functional connectivity between prefrontal and sensorimotor cortices are altered in Nurr1-ablated mice. Our findings suggest that Nurr1-targeted strategies provide additional avenues for functional studies of the CLA.


Assuntos
Claustrum , Alucinógenos , Neurônios , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares , Animais , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Camundongos , Alucinógenos/farmacologia , Claustrum/metabolismo , Neurônios/metabolismo , Masculino , Camundongos Knockout , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiologia , Córtex Sensório-Motor/metabolismo , Córtex Sensório-Motor/fisiologia
2.
Nucleic Acids Res ; 50(3): 1280-1296, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35048973

RESUMO

A prominent aspect of most, if not all, central nervous systems (CNSs) is that anterior regions (brain) are larger than posterior ones (spinal cord). Studies in Drosophila and mouse have revealed that Polycomb Repressor Complex 2 (PRC2), a protein complex responsible for applying key repressive histone modifications, acts by several mechanisms to promote anterior CNS expansion. However, it is unclear what the full spectrum of PRC2 action is during embryonic CNS development and how PRC2 intersects with the epigenetic landscape. We removed PRC2 function from the developing mouse CNS, by mutating the key gene Eed, and generated spatio-temporal transcriptomic data. To decode the role of PRC2, we developed a method that incorporates standard statistical analyses with probabilistic deep learning to integrate the transcriptomic response to PRC2 inactivation with epigenetic data. This multi-variate analysis corroborates the central involvement of PRC2 in anterior CNS expansion, and also identifies several unanticipated cohorts of genes, such as proliferation and immune response genes. Furthermore, the analysis reveals specific profiles of regulation via PRC2 upon these gene cohorts. These findings uncover a differential logic for the role of PRC2 upon functionally distinct gene cohorts that drive CNS anterior expansion. To support the analysis of emerging multi-modal datasets, we provide a novel bioinformatics package that integrates transcriptomic and epigenetic datasets to identify regulatory underpinnings of heterogeneous biological processes.


Assuntos
Sistema Nervoso Central/embriologia , Complexo Repressor Polycomb 2 , Animais , Embrião de Mamíferos/metabolismo , Histonas/genética , Histonas/metabolismo , Camundongos , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo
3.
Curr Biol ; 27(8): 1161-1172, 2017 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-28392108

RESUMO

A readily evident feature of animal central nervous systems (CNSs), apparent in all vertebrates and many invertebrates alike, is its "wedge-like" appearance, with more cells generated in anterior than posterior regions. This wedge could conceivably be established by an antero-posterior (A-P) gradient in the number of neural progenitor cells, their proliferation behaviors, and/or programmed cell death (PCD). However, the contribution of each of these mechanisms, and the underlying genetic programs, are not well understood. Building upon recent progress in the Drosophila melanogaster (Drosophila) ventral nerve cord (VNC), we address these issues in a comprehensive manner. We find that, although PCD plays a role in controlling cell numbers along the A-P axis, the main driver of the wedge is a gradient of daughter proliferation, with divisions directly generating neurons (type 0) being more prevalent posteriorly and dividing daughters (type I) more prevalent anteriorly. In addition, neural progenitor (NB) cell-cycle exit occurs earlier posteriorly. The gradient of type I > 0 daughter proliferation switch and NB exit combine to generate radically different average lineage sizes along the A-P axis, differing by more than 3-fold in cell number. We find that the Hox homeotic genes, expressed in overlapping A-P gradients and with a late temporal onset in NBs, trigger the type I > 0 daughter proliferation switch and NB exit. Given the highly evolutionarily conserved expression of overlapping Hox homeotic genes in the CNS, our results point to a common mechanism for generating the CNS wedge.


Assuntos
Proliferação de Células , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Células-Tronco Neurais/citologia , Neurônios/citologia , Animais , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA