Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Discov Today ; 28(7): 103618, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37196760

RESUMO

The 505(b)(2) NDA pathway can reduce drug development costs and accelerate the time to market by leveraging existing public data using clinical bridging and regulatory strategies. Whether or not a drug qualifies for the 505(b)(2) pathway depends on the active ingredient, drug formulation, clinical indication and other factors. Clinical programs can be streamlined and accelerated, and confer unique marketing benefits, such as exclusivity, depending on the regulatory strategy and product. Considerations for chemistry, manufacturing and controls (CMC) and the unique manufacturing issues that can arise owing to the accelerated development of 505(b)(2) drug products are also discussed.


Assuntos
Desenvolvimento de Medicamentos , Estados Unidos , United States Food and Drug Administration
2.
Drug Discov Today ; 24(1): 46-56, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30041014

RESUMO

In the USA, drugs are approved by the FDA by three main regulatory pathways: (i) 505(b)(1) new drug applications (NDAs); (ii) 505(b)(2) NDAs; and (iii) 505(j) abbreviated NDAs (ANDAs). The appropriate pathway depends on the active ingredient, already approved drug products, drug formulation, clinical indication, route of exposure, among other factors. The 505(b)(2) NDA pathway is a regulatory approval pathway that allows sponsors to use existing public data in lieu of conducting studies; thus, potentially offering significant drug development and marketing advantages. Nonclinical testing programs for 505(b)(2) submissions are often reduced and, in some cases, are not even required. This paper provides an overview of the 505(b)(2) regulatory pathway with a focus on how nonclinical programs can be streamlined and accelerated.


Assuntos
Desenvolvimento de Medicamentos , Animais , Consenso , Humanos , Estados Unidos , United States Food and Drug Administration
3.
Pediatr Res ; 85(3): 398-404, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30555154

RESUMO

BACKGROUND: Whether long-term methylphenidate (MPH) results in any changes in cardiovascular function or structure can only be properly addressed through a randomized trial using an animal model which permits elevated dosing over an extended period of time. METHODS: We studied 28 male rhesus monkeys (Macaca mulatta) approximately 7 years of age that had been randomly assigned to one of three MPH dosages: vehicle control (0 mg/kg, b.i.d., n = 9), low dose (2.5 mg/kg, b.i.d., n = 9), or high dose (12.5 mg/kg, b.i.d., n = 10). Dosage groups were compared on serum cardiovascular and inflammatory biomarkers, electrocardiograms (ECGs), echocardiograms, myocardial biopsies, and clinical pathology parameters following 5 years of uninterrupted dosing. RESULTS: With the exception of serum myoglobin, there were no statistical differences or apparent dose-response trends in clinical pathology, cardiac inflammatory biomarkers, ECGs, echocardiograms, or myocardial biopsies. The high-dose MPH group had a lower serum myoglobin concentration (979 ng/mL) than either the low-dose group (1882 ng/mL) or the control group (2182 ng/mL). The dose response was inversely proportional to dosage (P = .0006). CONCLUSIONS: Although the findings cannot be directly generalized to humans, chronic MPH exposure is unlikely to be associated with increased cardiovascular risk in healthy children.


Assuntos
Sistema Cardiovascular/efeitos dos fármacos , Sistema Cardiovascular/fisiopatologia , Metilfenidato/administração & dosagem , Animais , Comportamento Animal/efeitos dos fármacos , Biópsia , Estimulantes do Sistema Nervoso Central/administração & dosagem , Ecocardiografia , Eletrocardiografia , Ventrículos do Coração/efeitos dos fármacos , Inflamação , Macaca mulatta , Masculino , Miocárdio/patologia , Distribuição Aleatória , Risco
4.
Int J Toxicol ; 36(5): 365-379, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28820004

RESUMO

Drug-induced liver injury in children (cDILI) accounts for about 1% of all reported adverse drug reactions throughout all age groups, less than 10% of all clinical DILI cases, and around 20% of all acute liver failure cases in children. The overall DILI susceptibility in children has been assumed to be lower than in adults. Nevertheless, controversial evidence is emerging about children's sensitivity to DILI, with children's relative susceptibility to DILI appearing to be highly drug-specific. The culprit drugs in cDILI are similar but not identical to DILI in adults (aDILI). This is demonstrated by recent findings that a drug frequently associated with aDILI (amoxicillin/clavulanate) was rarely associated with cDILI and that the drug basiliximab caused only cDILI but not aDILI. The fatality in reported cDILI studies ranged from 4% to 31%. According to the US Food and Drug Administration-approved drugs labels, valproic acid, dactinomycin, and ampicillin appear more likely to cause cDILI. In contrast, deferasirox, isoniazid, dantrolene, and levofloxacin appear more likely to cause aDILI. Animal models have been explored to mimic children's increased susceptibility to valproic acid hepatotoxicity or decreased susceptibility to acetaminophen or halothane hepatotoxicity. However, for most drugs, animal models are not readily available, and the underlying mechanisms for the differential reactions to DILI between children and adults remain highly hypothetical. Diagnosis tools for cDILI are not yet available. A critical need exists to fill the knowledge gaps in cDILI. This review article provides an overview of cDILI and specific drugs associated with cDILI.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/etiologia , Animais , Criança , Aprovação de Drogas , Humanos , Modelos Animais , Política Pública , Estados Unidos , United States Government Agencies
5.
Proteomics Clin Appl ; 11(1-2)2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27634590

RESUMO

PURPOSE: Overdose of acetaminophen (APAP) is a major cause of acute liver failure. This study was aimed to identify pathways related to hepatotoxicity and potential biomarkers of liver injury. EXPERIMENTAL DESIGN: Rats were treated with low (100 mg/kg) and high (1250 mg/kg) doses of APAP, and liver tissues at 6 and 24 h post-treatment were analyzed using a proteomic approach of 16O/18O labeling and 2D-LC-MS/MS. RESULTS: Molecular pathways evolved progressively from scattered and less significant perturbations to more focused and significant alterations in a dose- and time-dependent manner upon APAP treatment. Imbalanced expression of hemeoxygenase 1 (HMOX1) and biliverdin reductase A (BLVRA) was associated with hepatotoxicity. Protein abundance changes of a total of 31 proteins were uniquely correlated to liver damage, among which a dramatic increase of HMOX1 levels in plasma was observed. Liver injury-associated significant elevation of plasma HMOX1 was further validated in mice treated with APAP. CONCLUSIONS AND CLINICAL RELEVANCE: This study unveiled molecular changes associated with APAP-induced liver toxicity at the pathway levels and identified HMOX1 as a potential plasma biomarker of liver injury.


Assuntos
Acetaminofen/toxicidade , Biomarcadores/análise , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Heme Oxigenase-1/análise , Proteômica , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel Bidimensional , Ensaio de Imunoadsorção Enzimática , Heme Oxigenase-1/sangue , Heme Oxigenase-1/metabolismo , Marcação por Isótopo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/análise , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Isótopos de Oxigênio/química , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
6.
Toxicol Appl Pharmacol ; 284(2): 180-7, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25708609

RESUMO

UNLABELLED: Developing biomarkers for detecting acetaminophen (APAP) toxicity has been widely investigated. Recent studies of adults with APAP-induced liver injury have reported human serum microRNA-122 (miR-122) as a novel biomarker of APAP-induced liver injury. The goal of this study was to examine extracellular microRNAs (miRNAs) as potential biomarkers for APAP liver injury in children. Global levels of serum and urine miRNAs were examined in three pediatric subgroups: 1) healthy children (n=10), 2) hospitalized children receiving therapeutic doses of APAP (n=10) and 3) children hospitalized for APAP overdose (n=8). Out of 147 miRNAs detected in the APAP overdose group, eight showed significantly increased median levels in serum (miR-122, -375, -423-5p, -30d-5p, -125b-5p, -4732-5p, -204-5p, and -574-3p), compared to the other groups. Analysis of urine samples from the same patients had significantly increased median levels of four miRNAs (miR-375, -940, -9-3p and -302a) compared to the other groups. Importantly, correlation of peak serum APAP protein adduct levels (an indicator of the oxidation of APAP to the reactive metabolite N-acetyl-para-quinone imine) with peak miRNA levels showed that the highest correlation was observed for serum miR-122 (R=0.94; p<0.01) followed by miR-375 (R=0.70; p=0.05). CONCLUSION: Our findings demonstrate that miRNAs are increased in children with APAP toxicity and correlate with APAP protein adducts, suggesting a potential role as biomarkers of APAP toxicity.


Assuntos
Acetaminofen/intoxicação , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Overdose de Drogas/metabolismo , MicroRNAs/biossíntese , Acetaminofen/metabolismo , Adolescente , Biomarcadores/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Criança , Pré-Escolar , Overdose de Drogas/etiologia , Overdose de Drogas/genética , Feminino , Humanos , Fígado/efeitos dos fármacos , Masculino
7.
Biochem Biophys Res Commun ; 443(3): 1097-104, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24384371

RESUMO

Epigallocatechin gallate (EGCG), the major flavonoid in green tea, is consumed via tea products and dietary supplements, and has been tested in clinical trials. However, EGCG can cause hepatotoxicity in humans and animals by unknown mechanisms. Here EGCG effects on rat liver mitochondria were examined. EGCG showed negligible effects on oxidative phosphorylation at 7.5-100µM in normal mitochondria. However, respiratory chain complexes (RCCs) were profoundly inhibited by EGCG in mitochondria undergoing Ca(2+) overload-induced mitochondrial permeability transition (MPT). As RCCs are located in mitochondrial inner membranes (IM) and matrix, it was reasoned that EGCG could not readily pass through IM to affect RCCs in normal mitochondria but may do so when IM integrity is compromised. This speculation was substantiated in three ways. (1) Purified EGCG-bound proteins were barely detectable in normal mitochondria and contained no RCCs as determined by Western blotting, but swelling mitochondria contained about 1.5-fold more EGCG-bound proteins which included four RCC subunits together with cyclophilin D that locates in mitochondrial matrix. (2) Swelling mitochondria consumed more EGCG than normal ones. (3) The MPT blocker cyclosporine A diminished the above-mentioned difference. Among four subunits of RCC II, only SDHA and SDHB which locate in mitochondrial matrix, but not SDHC or SDHD which insert into the IM, were found to be EGCG targets. Interestingly, EGCG promoted Ca(2+) overload-induced MPT only when moderate MPT already commenced. This study identified hepatic RCCs as targets for EGCG in swelling but not normal mitochondria, suggesting EGCG may trigger hepatotoxicity by worsening pre-existing mitochondria abnormalities.


Assuntos
Catequina/análogos & derivados , Complexo de Proteínas da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Dilatação Mitocondrial/efeitos dos fármacos , Chá/química , Animais , Western Blotting , Catequina/farmacologia , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Eletroforese em Gel de Poliacrilamida , Masculino , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Fosforilação Oxidativa/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Ratos , Ratos Sprague-Dawley , Coloração pela Prata
8.
J Appl Toxicol ; 34(8): 835-40, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23686521

RESUMO

(+)-Usnic acid (UA) is consumed as a dietary supplement to promote weight loss; however, dietary supplements containing UA have been associated with clinical cases of severe liver injury. UA has been shown to be hepatotoxic in rats and is extensively metabolized by hepatic cytochrome P450s (CYPs); therefore, we examined if UA metabolism results in the formation of cytotoxic metabolites or if metabolism is a detoxification process in primary rat hepatocytes. When CYP activity was suppressed by the non-isoenzyme-selective inhibitor SKF-525A (20 µM), or the CYP1A inhibitor alpha-naphthoflavone (10 µM), or the CYP3A inhibitor ketoconazole (25 µM), the cytotoxicity of UA at 3~6 µM after 3~20 h of exposure was significantly increased as measured by lactate dehydrogenase (LDH) leakage. At 2 h after UA exposure, an earlier time point prior to LDH release, these CYP inhibitors potentiated UA-induced inhibition of cellular respiration as determined by the Clark type oxygen electrode. Cellular adenosine triphosphate (ATP) depletion by UA was also exacerbated by these CYP inhibitors. The CYP2B/2C inhibitor, ticlopidine at 20 µM, showed no effects in parallel experiments. These data demonstrate that UA is bio-transformed to less toxic metabolites in rat primary hepatocytes, probably mainly by CYP1A and 3A, but not 2B/2C. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.


Assuntos
Benzofuranos/efeitos adversos , Inibidores das Enzimas do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Hepatócitos/efeitos dos fármacos , Animais , Benzoflavonas/química , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Suplementos Nutricionais , Inibidores Enzimáticos/química , Cetoconazol/química , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proadifeno/química , Ratos , Ratos Sprague-Dawley , Ticlopidina/química
9.
Food Chem Toxicol ; 62: 707-21, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24080264

RESUMO

Green tea has been purported to have beneficial health effects including protective effects against oxidative stress. Acetaminophen (APAP) is a widely used analgesic drug that can cause acute liver injury in overdose situations. These studies explored the effects of green tea extract (GTE) on APAP-induced hepatotoxicity in liver tissue extracts using ultra performance liquid chromatography/quadrupole time-of-flight mass spectrometry and nuclear magnetic resonance spectroscopy. Mice were orally administered GTE, APAP or GTE and APAP under three scenarios. APAP alone caused a high degree of hepatocyte necrosis associated with increases in serum transaminases and alterations in multiple metabolic pathways. The time of GTE oral administration relative to APAP either protected against or potentiated the APAP-induced hepatotoxicity. Dose dependent decreases in histopathology scores and serum transaminases were noted when GTE was administered prior to APAP; whereas, the opposite occurred when GTE was administered after APAP. Similarly, metabolites altered by APAP alone were less changed when GTE was given prior to APAP. Significantly altered pathways included fatty acid metabolism, glycerophospholipid metabolism, glutathione metabolism, and energy pathways. These studies demonstrate the complex interaction between GTE and APAP and the need to employ novel analytical strategies to understand the effects of dietary supplements on pharmaceutical compounds.


Assuntos
Acetaminofen/efeitos adversos , Camellia sinensis/química , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Extratos Vegetais/farmacologia , Animais , Relação Dose-Resposta a Droga , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos/metabolismo , Glutationa/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Espectroscopia de Ressonância Magnética , Metabolômica/métodos , Camundongos , Camundongos Endogâmicos
10.
J Pharmacol Exp Ther ; 344(1): 286-94, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23093024

RESUMO

Acetaminophen (APAP)-induced liver injury is the leading cause of acute liver failure in many countries. This study determined the extent of liver protein sulfhydryl depletion not only in whole liver homogenate but also in the zonal pattern of sulfhydryl depletion within the liver lobule. A single oral gavage dose of 150 or 300 mg/kg APAP in B6C3F1 mice produced increased serum alanine aminotransferase levels, liver necrosis, and glutathione depletion in a dose-dependent manner. Free protein sulfhydryls were measured in liver protein homogenates by labeling with maleimide linked to a near infrared fluorescent dye followed by SDS-polyacrylamide gel electrophoresis. Global protein sulfhydryl levels were decreased significantly (48.4%) starting at 1 hour after the APAP dose and maintained at this reduced level through 24 hours. To visualize the specific hepatocytes that had reduced protein sulfhydryl levels, frozen liver sections were labeled with maleimide linked to horseradish peroxidase. The centrilobular areas exhibited dramatic decreases in free protein sulfhydryls while the periportal regions were essentially spared. These protein sulfhydryl-depleted regions correlated with areas exhibiting histopathologic injury and APAP binding to protein. The majority of protein sulfhydryl depletion was due to reversible oxidation since the global- and lobule-specific effects were essentially reversed when the samples were reduced with tris(2-carboxyethy)phosphine before maleimide labeling. These temporal and zonal pattern changes in protein sulfhydryl oxidation shed new light on the importance that changes in protein redox status might play in the pathogenesis of APAP hepatotoxicity.


Assuntos
Acetaminofen/toxicidade , Analgésicos não Narcóticos/toxicidade , Fígado/metabolismo , Compostos de Sulfidrila/metabolismo , Acetaminofen/antagonistas & inibidores , Alanina Transaminase/sangue , Analgésicos não Narcóticos/antagonistas & inibidores , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Eletroforese em Gel de Poliacrilamida , Glutationa/metabolismo , Imuno-Histoquímica , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Necrose
11.
Toxicol Lett ; 214(3): 328-38, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23010222

RESUMO

Epigallocatechin gallate (EGCG) inhibits drug metabolizing enzymes by unknown mechanisms. Here we examined if the inhibition is due to covalent-binding of EGCG to the enzymes or formation of protein aggregates. EGCG was incubated with rat liver microsomes at 1-100µM for 30min. The EGCG-binding proteins were affinity purified using m-aminophenylboronic acid agarose and probed with antibodies against glyceraldehyde-3-phosphate dehydrogenase (GAPDH), actin, cytochrome P450 (CYP) 1A1, CYP1A2, CYP2B1/2, CYP2E1, CYP3A, catechol-O-methyltransferase (COMT) and microsomal glutathione transferase 1 (MGST1). All but actin and soluble COMT were positively detected at ≥1µM EGCG, indicating EGCG selectively bound to a subset of proteins including membrane-bound COMT. The binding correlated well with inhibition of CYP activities, except for CYP2E1 whose activity was unaffected despite evident binding. The antioxidant enzyme MGST1, but not cytosolic GSTs, was remarkably inhibited, providing novel evidence supporting the pro-oxidative effects of EGCG. When microsomes incubated with EGCG were probed on Western blots, all but the actin and CYP2E1 antibodies showed a significant reduction in binding at ≥1µM EGCG, suggesting that a fraction of the indicated proteins formed aggregates that likely contributed to the inhibitory effects of EGCG but were not recognizable by antibodies against the intact proteins. This raised the possibility that previous reports on EGCG regulating protein expression using GAPDH as a reference should be revisited for accuracy. Remarkable protein aggregate formation in EGCG-treated microsomes was also observed by analyzing Coomassie Blue-stained SDS-PAGE gels. EGCG effects were partially abolished in the presence of 1mM glutathione, suggesting they are particularly relevant to the in vivo conditions when glutathione is depleted by toxicant insults.


Assuntos
Antioxidantes/farmacologia , Catequina/análogos & derivados , Inibidores das Enzimas do Citocromo P-450 , Inibidores Enzimáticos/farmacologia , Microssomos Hepáticos/efeitos dos fármacos , Animais , Western Blotting , Catequina/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Citosol/efeitos dos fármacos , Citosol/enzimologia , Relação Dose-Resposta a Droga , Antagonismo de Drogas , Glutationa/farmacologia , Glutationa Transferase/antagonistas & inibidores , Glutationa Transferase/metabolismo , Masculino , Microssomos Hepáticos/enzimologia , Ligação Proteica , Ratos , Ratos Sprague-Dawley
12.
Food Chem Toxicol ; 50(5): 1439-46, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22306919

RESUMO

Green tea extract (GTE) has been advocated as a hepatoprotective compound and a possible therapeutic agent for acetaminophen (APAP) overdose. This study was conducted to determine if GTE can provide protection against APAP-induced hepatotoxicity. Three different exposure scenarios were tested. The first involved administering APAP (150 mg/kg, orally) to mice followed 6h later by GTE (500 or 1000 mg/kg). The other two involved administering GTE prior to the APAP dose. GTE (500 or 1000 mg/kg, orally) was administered 3h prior to APAP (200 mg/kg, orally) or for three consecutive days (once-daily) followed by APAP (300 mg/kg) on the fourth day. Indices of hepatotoxicity were assessed 24h after the APAP dose. GTE potentiated APAP-induced hepatotoxicity when administered after the APAP dose. GTE caused significant glutathione depletion and this effect likely contributed to the observed potentiation. In contrast, GTE provided protection against APAP-induced hepatotoxicity when administered prior to the APAP dose. GTE dramatically decreased APAP covalent binding to protein indicating that less reactive metabolite was available to cause hepatocellular injury. These results highlight the potential for drug-dietary supplement interactions and the importance of testing multiple exposure scenarios to adequately model different types of potential interactions.


Assuntos
Acetaminofen/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Fígado/efeitos dos fármacos , Extratos Vegetais/farmacologia , Chá/química , Animais , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Glutationa/metabolismo , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos
13.
Toxicol Sci ; 125(2): 335-44, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22112502

RESUMO

Circulating microRNAs (miRNAs) have emerged as novel noninvasive biomarkers for several diseases and other types of tissue injury. This study tested the hypothesis that changes in the levels of urinary miRNAs correlate with liver injury induced by hepatotoxicants. Sprague-Dawley rats were administered acetaminophen (APAP) or carbon tetrachloride (CCl(4)) and one nonhepatotoxicant (penicillin/PCN). Urine samples were collected over a 24 h period after a single oral dose of APAP (1250 mg/kg), CCl(4) (2000 mg/kg), or PCN (2400 mg/kg). APAP and CCl(4) induced liver injury based upon increased serum alanine and aspartate aminotransferase levels and histopathological findings, including liver necrosis. APAP and CCl(4) both significantly increased the urinary levels of 44 and 28 miRNAs, respectively. In addition, 10 of the increased miRNAs were in common between APAP and CCl(4). In contrast, PCN caused a slight decrease of a different nonoverlapping set of urinary miRNAs. Cluster analysis revealed a distinct urinary miRNA pattern from the hepatotoxicant-treated groups when compared with vehicle controls and PCN. Analysis of hepatic miRNA levels suggested that the liver was the source of the increased urinary miRNAs after APAP exposure; however, the results from CCl(4) were equivocal. Computational analysis was used to predict target genes of the 10 shared hepatotoxicant-induced miRNAs. Liver gene expression profiling using whole genome microarrays identified eight putative miRNA target genes that were significantly altered in the liver of APAP- and CCl(4)-treated animals. In conclusion, the patterns of urinary miRNA may hold promise as biomarkers of hepatotoxicant-induced liver injury.


Assuntos
Acetaminofen/toxicidade , Tetracloreto de Carbono/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Fígado/efeitos dos fármacos , MicroRNAs/urina , Testes de Toxicidade/métodos , Alanina Transaminase/sangue , Fosfatase Alcalina/sangue , Animais , Aspartato Aminotransferases/sangue , Biomarcadores/sangue , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/urina , Marcadores Genéticos , Fígado/metabolismo , Fígado/patologia , Masculino , Necrose , Penicilinas/toxicidade , Valor Preditivo dos Testes , Ratos , Ratos Sprague-Dawley , Medição de Risco , Fatores de Tempo , Urinálise
14.
J Pharmacol Exp Ther ; 340(2): 360-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22045778

RESUMO

The role of protein glutathionylation in acetaminophen (APAP)-induced liver injury was investigated in this study. A single oral gavage dose of 150 or 300 mg/kg APAP in B6C3F1 mice produced increased serum alanine aminotransferase and aspartate aminotransferase levels and liver necrosis in a dose-dependent manner. The ratio of GSH to GSSG was decreased in a dose-dependent manner, suggesting that APAP produced a more oxidizing environment within the liver. Despite the increased oxidation state, the level of global protein glutathionylation was decreased at 1 h and continued to decline through 24 h. Immunohistochemical localization of glutathionylated proteins showed a complex dynamic change in the lobule zonation of glutathionylated proteins. At 1 h after APAP exposure, the level of glutathionylation decreased in the single layer of hepatocytes around the central veins but increased mildly in the remaining centrilobular hepatocytes. This increase correlated with the immunohistochemical localization of APAP covalently bound to protein. Thereafter, the level of glutathionylation decreased dramatically over time in the centrilobular regions with major decreases observed at 6 and 24 h. Despite the overall decreased glutathionylation, a layer of cells lying between the undamaged periportal region and the damaged centrilobular hepatocytes exhibited high levels of glutathionylation at 3 and 6 h in all samples and in some 24-h samples that had milder injury. These temporal and zonal pattern changes in protein glutathionylation after APAP exposure indicate that protein glutathionylation may play a role in protein homeostasis during APAP-induced hepatocellular injury.


Assuntos
Acetaminofen/efeitos adversos , Acetaminofen/farmacologia , Glutationa/metabolismo , Fígado/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas/metabolismo , Acetaminofen/administração & dosagem , Acetaminofen/análogos & derivados , Acetaminofen/metabolismo , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Dissulfeto de Glutationa/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos , Necrose/sangue , Necrose/metabolismo , Necrose/patologia
15.
Toxicol Sci ; 122(2): 579-86, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21546349

RESUMO

The Black Box Warning section of the U.S. drug label for leflunomide was recently updated to include stronger warnings about potential hepatotoxicity from this novel anti-arthritis drug. Because metabolic activation is a key mechanism for drug-induced hepatotoxicity, we examined whether leflunomide and its major metabolite, A77 1726, are cytotoxic to primary rat hepatocytes and whether their toxicity is modulated by hepatic cytochrome P450s (CYPs). As measured by lactate dehydrogenase leakage, time-dependent cytotoxicity was observed at 250-500 µM for leflunomide and 330-500 µM for A77 1726 within 20 h. Unexpectedly, three nonisoenzyme-specific CYP inhibitors, including SKF-525A, metyrapone, and 1-aminobenzotriazole, did not reduce but remarkably enhanced the cytotoxicity of leflunomide or A77 1726. SKF-525A pretreatment notably rendered hepatocytes susceptible to as low as 15 µM leflunomide or A77 1726. Three isoenzyme-specific CYP inhibitors including alpha-naphthoflavone, ticlopidine, and ketoconazole that mainly target CYP1A, CYP2B/2C, and CYP3A, respectively, also enhanced the cytotoxicity. A strong synergistic effect, similar to SKF-525A alone, was noted using a combination of all three of the isoenzyme-specific inhibitors. Hepatocytes pretreated with the CYP inducer dexamethasone for 24 h exhibited decreased cytotoxicity to leflunomide and A77 1726. At the concentrations tested, the CYP inhibitors and inducer showed no cytotoxicity. These data demonstrate that the parent forms of leflunomide and A77 1726 are more toxic to hepatocytes than their poorly characterized metabolites, indicating that the metabolic process of leflunomide is a detoxification step rather than an initiating event leading to toxicity.


Assuntos
Compostos de Anilina/toxicidade , Sistema Enzimático do Citocromo P-450/metabolismo , Hepatócitos/efeitos dos fármacos , Hidroxibutiratos/toxicidade , Isoxazóis/toxicidade , Animais , Benzoflavonas/metabolismo , Biomarcadores , Sobrevivência Celular , Células Cultivadas , Crotonatos , Hepatócitos/enzimologia , Inativação Metabólica , Cetoconazol/metabolismo , Leflunomida , Fígado/citologia , Fígado/efeitos dos fármacos , Masculino , Nitrilas , Cultura Primária de Células , Proadifeno/metabolismo , Ratos , Ratos Sprague-Dawley , Ticlopidina/metabolismo , Toluidinas , Triazóis/metabolismo
16.
Phytomedicine ; 18(7): 592-600, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21397479

RESUMO

The widely used over-the-counter analgesic acetaminophen (APAP) is the leading cause of acute liver failure in the United States and due to this high incidence, a recent FDA Advisory Board recommended lowering the maximum dose of APAP. Kava herbal dietary supplements have been implicated in several human liver failure cases leading to the ban of kava-containing products in several Western countries. In the US, the FDA has issued warnings about the potential adverse effects of kava, but kava dietary supplements are still available to consumers. In this study, we tested the potential of kava extract to potentiate APAP-induced hepatocyte cytotoxicity. In rat primary hepatocytes, co-treatment with kava and APAP caused 100% loss of cell viability, while the treatment of kava or APAP alone caused ∼50% and ∼30% loss of cell viability, respectively. APAP-induced glutathione (GSH) depletion was also potentiated by kava. Co-exposure to kava decreased cellular ATP concentrations, increased the formation of reactive oxygen species, and caused mitochondrial damage as indicated by a decrease in mitochondrial membrane potential. In addition, similar findings were obtained from a cultured rat liver cell line, clone-9. These observations indicate that kava potentiates APAP-induced cytotoxicity by increasing the magnitude of GSH depletion, resulting in oxidative stress and mitochondrial dysfunction, ultimately leading to cell death. These results highlight the potential for drug-dietary supplement interactions even with widely used over-the-counter drugs.


Assuntos
Acetaminofen/toxicidade , Analgésicos não Narcóticos/toxicidade , Ansiolíticos/toxicidade , Hepatócitos/efeitos dos fármacos , Kava/química , Preparações de Plantas/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Suplementos Nutricionais/efeitos adversos , Sinergismo Farmacológico , Glutationa/metabolismo , Hepatócitos/metabolismo , Humanos , Falência Hepática/induzido quimicamente , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Preparações de Plantas/química , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...