Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J R Soc Interface ; 9(77): 3444-54, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22896571

RESUMO

Different synthetic biomaterials such as polylactide (PLA), polycaprolactone and poly-l-lactide-co-ε-caprolactone (PLCL) have been studied for urothelial tissue engineering, with favourable results. The aim of this research was to further optimize the growth surface for human urothelial cells (hUCs) by comparing different PLCL-based membranes: smooth (s) and textured (t) PLCL and knitted PLA mesh with compression-moulded PLCL (cPLCL). The effects of topographical texturing on urothelial cell response and mechanical properties under hydrolysis were studied. The main finding was that both sPLCL and tPLCL supported hUC growth significantly better than cPLCL. Interestingly, tPLCL gave no significant advantage to hUC attachment or proliferation compared with sPLCL. However, during the 14 day assessment period, the majority of cells were viable and maintained phenotype on all the membranes studied. The material characterization exhibited potential mechanical characteristics of sPLCL and tPLCL for urothelial applications. Furthermore, the highest elongation of tPLCL supports the use of this kind of texturing. In conclusion, in light of our cell culture results and mechanical characterization, both sPLCL and tPLCL should be further studied for urothelial tissue engineering.


Assuntos
Poliésteres/química , Engenharia Tecidual/métodos , Urotélio , Materiais Biocompatíveis , Adesão Celular , Proliferação de Células , Células Cultivadas , Humanos , Propriedades de Superfície
2.
Regen Med ; 5(5): 749-62, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20868330

RESUMO

BACKGROUND: Human embryonic stem cells (hESCs) can differentiate into any human cell type, including CNS cells, and thus have high potential in regenerative medicine. Several protocols exist for neuronal differentiation of hESCs, which do not necessarily work for all hESC lines. MATERIALS & METHODS: We tested the differentiation capacity of four similarly derived and cultured hESC lines (HS181, HS360, HS362 and HS401) in suspension culture in relatively simple neural differentiation medium for up to 20 weeks. RESULTS: All the hESC lines differentiated into neuronal cells, but in a line-dependent manner. Using our method, the HS181- and HS360-derived neurospheres differentiated in vitro into pure neuronal cell populations within 6 weeks, whereas HS362 and HS401 reached their peak of differentiation in 12 weeks, but never produced pure neuronal cell populations using the present method. The withdrawal of FGF from suspension culture increased the in vitro differentiation potential. The hESC-derived neurospheres formed functional neuronal networks when replated on a microelectrode array and responded as expected to pharmacologic modulation. CONCLUSION: Simple neurosphere culture is a suitable method for producing hESC-derived neuronal cells that can form functional neuronal networks from a number of hESC lines. The variation in the differentiation potential of hESC lines into neuronal cells must be carefully considered by those comparing various differentiation methods and designing transplantation therapies for neuronal disorders.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/citologia , Neurônios/citologia , Técnicas de Cultura de Células , Linhagem da Célula , Meios de Cultura/química , Fatores de Crescimento de Fibroblastos/farmacologia , Humanos , Células-Tronco Pluripotentes/citologia , Medicina Regenerativa/métodos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA