Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 62(13): 4521-31, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21659664

RESUMO

Salivary secretions of neonate Hessian fly larvae initiate a two-way exchange of molecules with their wheat host. Changes in properties of the leaf surface allow larval effectors to enter the plant where they trigger plant processes leading to resistance and delivery of defence molecules, or susceptibility and delivery of nutrients. To increase understanding of the host plant's response, the timing and characteristics of the induced epidermal permeability were investigated. Resistant plant permeability was transient and limited in area, persisting just long enough to deliver defence molecules before gene expression and permeability reverted to pre-infestation levels. The abundance of transcripts for GDSL-motif lipase/hydrolase, thought to contribute to cuticle reorganization and increased permeability, followed the same temporal profile as permeability in resistant plants. In contrast, susceptible plants continued to increase in permeability over time until the entire crown of the plant became a nutrient sink. Permeability increased with higher infestation levels in susceptible but not in resistant plants. The ramifications of induced plant permeability on Hessian fly populations are discussed.


Assuntos
Dípteros/fisiologia , Herbivoria/fisiologia , Epiderme Vegetal/fisiologia , Plântula/parasitologia , Triticum/parasitologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Análise Discriminante , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Hidrolases/química , Hidrolases/genética , Hidrolases/metabolismo , Larva/fisiologia , Dados de Sequência Molecular , Análise Multivariada , Vermelho Neutro/metabolismo , Permeabilidade , Células Vegetais/metabolismo , Epiderme Vegetal/citologia , Folhas de Planta/citologia , Folhas de Planta/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Coloração e Rotulagem , Fatores de Tempo , Triticum/enzimologia
2.
Plant Physiol Biochem ; 48(1): 54-61, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19914842

RESUMO

A sequence encoding a putative type-1 lipid transfer protein from wheat (Triticum aestivum L. em Thell) was identified through 'GeneCalling', an mRNA profiling technology. The mRNA for the Hfr-LTP (Hessian fly-responsive lipid transfer protein) gene decreased in abundance (196-fold) in susceptible wheat plants over the first eight days of attack by virulent Hessian fly larvae (Mayetiola destructor Say). Hfr-LTP encodes a putative protein containing eight cysteine residues that are conserved among plant LTPs and are responsible for correct protein folding through formation of disulfide bridges. Twelve hydrophobic amino acids in addition to arginine, glycine, proline, serine, threonine and tyrosine, plus an LTP signature sequence were present in conserved positions. A highly conserved signal peptide sequence was also present. Although attack by one virulent larva was sufficient to cause a decrease in Hfr-LTP mRNA abundance, higher infestation levels led to near silencing of the gene. Hfr-LTP transcript levels were not affected by other biotic factors (feeding by bird cherry-oat aphid, Rhopalosiphum padi L., and fall armyworm larvae, Spodoptera frugiperda Smith) or abiotic factors tested (mechanical wounding or treatment with abscisic acid, methyl jasmonate, or salicylic acid). Comparison to a previously described Hessian fly-responsive wheat LTP gene, TaLTP3, confirmed an initial increase in TaLTP3 mRNA in resistant plants. However, when quantified through eight days after egg hatch, responsiveness to infestation level and a marked decrease in susceptible plant TaLTP3 mRNA abundance were detected, as was seen for Hfr-LTP. Possible functions of LTP gene products in wheat-Hessian fly interactions are discussed.


Assuntos
Proteínas de Transporte/genética , Regulação da Expressão Gênica de Plantas , Expressão Gênica , Genes de Plantas , Imunidade Inata/genética , Doenças das Plantas/genética , Triticum/genética , Sequência de Aminoácidos , Animais , Afídeos , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Sequência Conservada , Dípteros , Perfilação da Expressão Gênica , Inativação Gênica , Larva , Dobramento de Proteína , Sinais Direcionadores de Proteínas , RNA Mensageiro/metabolismo , Triticum/metabolismo
3.
J Chem Ecol ; 34(11): 1401-10, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18841417

RESUMO

Gall-forming insects induce host plants to form specialized structures (galls) that provide immature life stages of the insect access to host plant nutrients and protection from natural enemies. Feeding by larvae of the Hessian fly (Mayetiola destructor Say) causes susceptible host wheat plants to produce a gall-like nutritive tissue that supports larval growth and development. To determine if changes in host plant free amino acid levels are associated with virulent Biotype L Hessian fly larval feeding, we quantified free amino acid levels in crown tissues of susceptible Newton wheat plants 1, 4, and 7 days after Hessian fly egg hatch. Hessian fly-infested susceptible plants were more responsive than resistant plants or uninfested controls, showing higher concentrations of alanine, glutamic acid, glycine, phenylalanine, proline, and serine 4 days after egg hatch. This 4-day post-hatch time point corresponds to the maturation of nutritive tissue cells in susceptible plants and the onset of rapid larval growth. By 7 days after egg hatch, when virulent second instars are actively feeding on the contents of nutritive tissue cells, the aromatic amino acids phenylalanine and tyrosine were more abundant compared to uninfested controls, but the levels of other free amino acids were no longer elevated. Changes in free amino acid abundance described in this report were associated with increased levels of mRNA encoded by wheat genes involved in amino acid synthesis and transport.


Assuntos
Aminoácidos/análise , Dípteros/crescimento & desenvolvimento , Dípteros/patogenicidade , Triticum/química , Aminoácidos/biossíntese , Aminoácidos/isolamento & purificação , Animais , Transporte Biológico , Dípteros/fisiologia , Interações Hospedeiro-Parasita , Larva/crescimento & desenvolvimento , Larva/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/química , Folhas de Planta/fisiologia , Reação em Cadeia da Polimerase , RNA Mensageiro/análise , RNA Mensageiro/genética , Fatores de Tempo , Triticum/parasitologia , Virulência
4.
Mol Plant Pathol ; 8(1): 69-82, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20507479

RESUMO

SUMMARY The gene-for-gene interaction triggering resistance of wheat against first-instar Hessian fly larvae utilizes specialized defence response genes not previously identified in other interactions with pests or pathogens. We characterized the expression of Hfr-3, a novel gene encoding a lectin-like protein with 68-70% identity to the wheat germ agglutinins. Within each of the four predicted chitin-binding hevein domains, the HFR-3 translated protein sequence contained five conserved saccharide-binding amino acids. Quantification of Hfr-3 mRNA levels confirmed a rapid response and gradual increase, up to 3000-fold above the uninfested control in the incompatible interaction 3 days after egg hatch. Hfr-3 mRNA abundance was influenced by the number of larvae per plant, suggesting that resistance is localized rather than systemic. In addition, Hfr-3 was responsive to another sucking insect, the bird cherry-oat aphid, but not to fall armyworm attack, wounding or exogenous application of methyl jasmonate, salicylic acid or abscisic acid. Western blot analysis demonstrated that HFR-3 protein increased in parallel to mRNA levels in crown tissues during incompatible interactions. HFR-3 protein was detected in both virulent and avirulent larvae, indicating ingestion. Anti-nutritional proteins, such as lectins, may be responsible for the apparent starvation of avirulent first-instar Hessian fly larvae during the initial few days of incompatible interactions with resistant wheat plants.

5.
Mol Plant Microbe Interact ; 19(9): 1023-33, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16941906

RESUMO

Genetic similarities between plant interactions with microbial pathogens and wheat interactions with Hessian fly larvae prompted us to investigate defense and counterdefense mechanisms. Plant oxidative burst, a rapid increase in the levels of active oxygen species (AOS) within the initial 24 h of an interaction with pathogens, commonly is associated with defenses that are triggered by gene-for-gene recognition events similar to those involving wheat and Hessian fly larvae. RNAs encoded by Hessian fly superoxide dismutase (SOD) and catalase (CAT) genes, involved in detoxification of AOS, increased in first-instar larvae during both compatible and incompatible interactions. However, mRNA levels of a wheat NADPH oxidase (NOX) gene that generates superoxide (O2-) did not increase. In addition, inhibiting wheat NOX enzyme with diphenyleneiodonium did not result in increased survival of avirulent larvae. However, nitro blue tetrazolium staining indicated that basal levels of O2- are present in both uninfested and infested wheat tissue. mRNA encoded by wheat genes involved in detoxification of the cellular environment, SOD, CAT, and glutathione-S-transferase did not increase in abundance. Histochemical staining with 3,3-diaminobenzidine revealed no increases in wheat hydrogen peroxide (H2O2) during infestation that were correlated with the changes in larval SOD and CAT mRNA. However, treatment with 2',7'-dichlorofluorescin demonstrated the presence of basal levels of H2O2 in the elongation zone of both infested and uninfested plants. The accumulation of a wheat flavanone 3-hydroxylase mRNA did show some parallels with larval gene mRNA profiles. These results suggested that larvae encounter stresses imposed by mechanisms other than an oxidative burst in wheat seedlings.


Assuntos
Dípteros/genética , Doenças das Plantas/genética , Triticum/genética , Animais , Catalase/genética , Dípteros/patogenicidade , Expressão Gênica/genética , Glutationa Transferase/genética , Interações Hospedeiro-Parasita/genética , Peróxido de Hidrogênio/metabolismo , Proteínas de Insetos/genética , Oxigenases de Função Mista/genética , Dados de Sequência Molecular , NADPH Oxidases/genética , Doenças das Plantas/parasitologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/parasitologia , Proteínas de Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Explosão Respiratória/genética , Superóxido Dismutase/genética , Fatores de Tempo , Triticum/metabolismo , Triticum/parasitologia , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...