Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(15): 24142-24156, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37475248

RESUMO

A laser system generating high-energy pulses at 2-µm wavelength with pulse widths tunable from 10-24 ns is described. It comprises an optical parametric oscillator that generates mJ-level signal seed radiation and an optical parametric amplifier that boosts the output to 800 mJ of combined signal and idler when pumped with 2 J pulses of 1064-nm laser light. The system operated with KTP crystals and running at 10 Hz repetition rate is characterized in the spatial, temporal, and spectral domains. The effect of saturation leads to an output pulse approaching flat-top spatial and box-shaped temporal profiles, as desired in various applications. The amplified pulses can be imaged down to sub-100 µm diameters, making this laser system a suitable driver for plasma sources of extreme ultraviolet light.

2.
Opt Express ; 30(26): 46040-46059, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558568

RESUMO

A non-linear spectroscopic study of the HDO molecule is performed in the wavelength range of 1.36-1.42 µm using noise-immune cavity-enhanced optical-heterodyne molecular spectroscopy (NICE-OHMS). More than 100 rovibrational Lamb dips are recorded, with an experimental precision of 2-20 kHz, related to the first overtone of the O-H stretch fundamental of HD16O and HD18O. Significant perturbations, including distortions, shifts, and splittings, have been observed for a number of Lamb dips. These spectral perturbations are traced back to an AC-Stark effect, arising due to the strong laser field applied in all saturation-spectroscopy experiments. The AC-Stark effect mixes parity pairs, that is pairs of rovibrational states whose assignment differs solely in the Kc quantum number, where Kc is part of the standard J K a,K c asymmetric-top rotational label. Parity-pair mixing seems to be especially large for parity pairs with Ka ≥ 3, whereby their energy splittings become as small as a few MHz, resulting in multi-component asymmetric Lamb-dip profiles of gradually increasing complexity. These complex profiles often include crossover resonances. This effect is well known in saturation spectroscopy, but has not been reported in combination with parity-pair mixing. Parity-pair mixing is not seen in H2 16O and H2 18O, because their parity pairs correspond to ortho and para nuclear-spin isomers, whose interaction is prohibited. Despite the frequency shifts observed for HD16O and HD18O, the absolute accuracy of the detected transitions still exceeds that achievable by Doppler-limited techniques.

3.
Nat Commun ; 11(1): 1708, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32249848

RESUMO

Frequency combs and cavity-enhanced optical techniques have revolutionized molecular spectroscopy: their combination allows recording saturated Doppler-free lines with ultrahigh precision. Network theory, based on the generalized Ritz principle, offers a powerful tool for the intelligent design and validation of such precision-spectroscopy experiments and the subsequent derivation of accurate energy differences. As a proof of concept, 156 carefully-selected near-infrared transitions are detected for H216O, a benchmark system of molecular spectroscopy, at kHz accuracy. These measurements, augmented with 28 extremely-accurate literature lines to ensure overall connectivity, allow the precise determination of the lowest ortho-H216O energy, now set at 23.794 361 22(25) cm-1, and 160 energy levels with similarly high accuracy. Based on the limited number of observed transitions, 1219 calibration-quality lines are obtained in a wide wavenumber interval, which can be used to improve spectroscopic databases and applied to frequency metrology, astrophysics, atmospheric sensing, and combustion chemistry.

4.
Phys Rev Lett ; 122(10): 103002, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30932670

RESUMO

The dissociation energy of H_{2} represents a benchmark quantity to test the accuracy of first-principles calculations. We present a new measurement of the energy interval between the EF ^{1}Σ_{g}^{+}(v=0,N=1) state and the 54p1_{1} Rydberg state of H_{2}. When combined with previously determined intervals, this new measurement leads to an improved value of the dissociation energy D_{0}^{N=1} of ortho-H_{2} that has, for the first time, reached a level of uncertainty that is 3 times smaller than the contribution of about 1 MHz resulting from the finite size of the proton. The new result of 35 999.582 834(11) cm^{-1} is in remarkable agreement with the theoretical result of 35 999.582 820(26) cm^{-1} obtained in calculations including high-order relativistic and quantum-electrodynamics corrections, as reported in the following Letter [M. Puchalski, J. Komasa, P. Czachorowski, and K. Pachucki, Phys. Rev. Lett. 122, 103003 (2019)PRLTAO0031-900710.1103/PhysRevLett.122.103003]. This agreement resolves a recent discrepancy between experiment and theory that had hindered a possible use of the dissociation energy of H_{2} in the context of the current controversy on the charge radius of the proton.

6.
J Chem Phys ; 136(23): 234310, 2012 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-22779596

RESUMO

An extensive survey of the D(2) absorption spectrum has been performed with the high-resolution VUV Fourier-transform spectrometer employing synchrotron radiation. The frequency range of 90,000-119,000 cm(-1) covers the full depth of the potential wells of the B (1)Σ(u)(+), B' (1)Σ(u)(+), and C (1)Π(u) electronic states up to the D(1s) + D(2l) dissociation limit. Improved level energies of rovibrational levels have been determined up to respectively v = 51, v = 13, and v = 20. Highest resolution is achieved by probing absorption in a molecular gas jet with slit geometry, as well as in a liquid helium cooled static gas cell, resulting in line widths of ≈0.35 cm(-1). Extended calibration methods are employed to extract line positions of D(2) lines at absolute accuracies of 0.03 cm(-1). The D (1)Π(u) and B'' (1)Σ(u)(+) electronic states correlate with the D(1s) + D(3l]) dissociation limit, but support a few vibrational levels below the second dissociation limit, respectively, v = 0-3 and v = 0-1, and are also included in the presented study. The complete set of resulting level energies is the most comprehensive and accurate data set for D(2). The observations are compared with previous studies, both experimental and theoretical.

7.
Opt Express ; 17(20): 18063-75, 2009 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-19907596

RESUMO

For the first time a detailed study of hybrid mode-locking in two-section InAs/InP quantum dot Fabry-Pérot-type lasers is presented. The output pulses have a typical upchirp of approximately 8 ps/nm, leading to very elongated pulses. The mechanism leading to this typical pulse shape and the phase noise is investigated by detailed radio-frequency and optical spectral studies as well as time-domain studies. The pulse shaping mechanism in these lasers is found to be fundamentally different than the mechanism observed in conventional mode-locked laser diodes, based on quantum well gain or bulk material.


Assuntos
Interferometria/instrumentação , Lasers , Modelos Teóricos , Pontos Quânticos , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Reprodutibilidade dos Testes , Espalhamento de Radiação , Sensibilidade e Especificidade
8.
J Chem Phys ; 130(17): 174306, 2009 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-19425775

RESUMO

The transition wave number from the EF (1)Sigma(g)(+)(v = 0, N = 1) energy level of ortho-H(2) to the 54p1(1)(0) Rydberg state below the X(+) (2)Sigma(g)(+)(v(+) = 0, N(+) = 1) ground state of ortho-H(2)(+) has been measured to be 25,209.99756 +/- (0.00022)(statistical) +/- (0.00007)(systematic) cm(-1). Combining this result with previous experimental and theoretical results for other energy level intervals, the ionization and dissociation energies of the hydrogen molecule have been determined to be 124,417.49113(37) and 36,118.06962(37) cm(-1), respectively, which represents a precision improvement over previous experimental and theoretical results by more than one order of magnitude. The new value of the ionization energy can be regarded as the most precise and accurate experimental result of this quantity, whereas the dissociation energy is a hybrid experimental-theoretical determination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...