Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Geophys Res Lett ; 49(11): e2021GL097366, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35859850

RESUMO

Oxidation of isoprene by nitrate radicals (NO3) or by hydroxyl radicals (OH) under high NOx conditions forms a substantial amount of organonitrates (ONs). ONs impact NOx concentrations and consequently ozone formation while also contributing to secondary organic aerosol. Here we show that the ONs with the chemical formula C4H7NO5 are a significant fraction of isoprene-derived ONs, based on chamber experiments and ambient measurements from different sites around the globe. From chamber experiments we found that C4H7NO5 isomers contribute 5%-17% of all measured ONs formed during nighttime and constitute more than 40% of the measured ONs after further daytime oxidation. In ambient measurements C4H7NO5 isomers usually dominate both nighttime and daytime, implying a long residence time compared to C5 ONs which are removed more rapidly. We propose potential nighttime sources and secondary formation pathways, and test them using a box model with an updated isoprene oxidation scheme.

3.
Nat Commun ; 13(1): 939, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177585

RESUMO

Chlorine atoms (Cl) are highly reactive and can strongly influence the abundances of climate and air quality-relevant trace gases. Despite extensive research on molecular chlorine (Cl2), a Cl precursor, in the polar atmosphere, its sources in other regions are still poorly understood. Here we report the daytime Cl2 concentrations of up to 1 ppbv observed in a coastal area of Hong Kong, revealing a large daytime source of Cl2 (2.7 pptv s-1 at noon). Field and laboratory experiments indicate that photodissociation of particulate nitrate by sunlight under acidic conditions (pH < 3.0) can activate chloride and account for the observed daytime Cl2 production. The high Cl2 concentrations significantly increased atmospheric oxidation. Given the ubiquitous existence of chloride, nitrate, and acidic aerosols, we propose that nitrate photolysis is a significant daytime chlorine source globally. This so far unaccounted for source of chlorine can have substantial impacts on atmospheric chemistry.

4.
Sci Total Environ ; 754: 142143, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32898781

RESUMO

Modern small-scale biomass burners have been recognized as an important renewable energy source because of the economic and environmental advantages of biomass over fossil fuels. However, the characteristics of their gas and particulate emissions remain incompletely understood, and there is substantial uncertainty concerning their health and climate impacts. Here, we present online measurements conducted during the operation of a residential wood-burning boiler. The measured parameters include gas and particle concentrations, optical absorption and chemical characteristics of gases and particles. Positive matrix factorization was performed to analyze data from a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) equipped with a filter inlet for gases and aerosols (FIGAERO). Six factors were identified and interpreted. Three factors were related to the chemical composition of the fuel representing lignin pyrolysis products, cellulose/hemicellulose pyrolysis products, and nitrogen-containing organics, while three factor were related to the physical characteristics of the emitted compounds: volatile compounds, semi-volatile compounds, and filter-derived compounds. An ordinal analysis was performed based on the factor fractions to identify the most influential masses in each factor, and by deconvoluting high-resolution mass spectra fingerprint molecules for each factor were identified. Results from the factor analysis were linked to the optical properties of the emissions, and lignin and cellulose/hemicellulose pyrolysis products appeared to be the most important sources of brown carbon under the tested burning conditions. It is concluded that the emissions from the complex combustion process can be described by a limited set of physically meaningful factors, which will help to rationalize subsequent transformation and tracing of emissions in the atmosphere and associated impacts on health and climate.

5.
Indoor Air ; 29(6): 913-925, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31420890

RESUMO

This study aimed to better understand and quantify the influence of ventilation strategies on occupant-related indoor air chemistry. The oxidation of human skin oil constituents was studied in a continuously ventilated climate chamber at two air exchange rates (1 h-1 and 3 h-1 ) and two initial ozone mixing ratios (30 and 60 ppb). Additional measurements were performed to investigate the effect of intermittent ventilation ("off" followed by "on"). Soiled t-shirts were used to simulate the presence of occupants. A time-of-flight-chemical ionization mass spectrometer (ToF-CIMS) in positive mode using protonated water clusters was used to measure the oxygenated reaction products geranyl acetone, 6-methyl-5-hepten-2-one (6-MHO) and 4-oxopentanal (4-OPA). The measurement data were used in a series of mass balance models accounting for formation and removal processes. Reactions of ozone with squalene occurring on the surface of the t-shirts are mass transport limited; ventilation rate has only a small effect on this surface chemistry. Ozone-squalene reactions on the t-shirts produced gas-phase geranyl acetone, which was subsequently removed almost equally by ventilation and further reaction with ozone. About 70% of gas-phase 6-MHO was produced in surface reactions on the t-shirts, the remainder in secondary gas-phase reactions of ozone with geranyl acetone. 6-MHO was primarily removed by ventilation, while further reaction with ozone was responsible for about a third of its removal. 4-OPA was formed primarily on the surfaces of the shirts (~60%); gas-phase reactions of ozone with geranyl acetone and 6-MHO accounted for ~30% and ~10%, respectively. 4-OPA was removed entirely by ventilation. The results from the intermittent ventilation scenarios showed delayed formation of the reaction products and lower product concentrations compared to continuous ventilation.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Ozônio/análise , Pele/química , Ventilação/métodos , Aldeídos/análise , Ambiente Construído , Vestuário , Monitoramento Ambiental/métodos , Humanos , Cetonas/análise , Espectrometria de Massas/métodos , Oxirredução , Terpenos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...