Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 245
Filtrar
1.
Neuroimage ; 284: 120475, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38013009

RESUMO

Age-related hearing loss (ARHL), one of the most common sensory deficits in elderly individuals, is a risk factor for dementia; however, it is unclear how ARHL affects the decline in cognitive function. To address this issue, a connectome gradient framework was used to identify critical features of information integration between sensory and cognitive processing centers using resting-state functional magnetic resonance imaging (rs-fMRI) data from 40 individuals with ARHL and 36 healthy controls (HCs). The first three functional gradient alterations associated with ARHL were investigated at the global, network and regional levels. Using a support vector machine (SVM) model, our analysis distinguished individuals with ARHL with normal cognitive function from those with cognitive decline. Compared to HCs, individuals with ARHL had a contracted principal primary-to-transmodal gradient axis, especially in the visual and default mode networks, with an altered gradient explained ratio and variance. Among individuals with ARHL, cognitive decline was detected in the visual network in the principal gradient as well as in the limbic, salience and default mode networks in the third gradient (salience to frontoparietal/default mode). These results suggest that ARHL is associated with disrupted information processing from the primary sensory networks to higher-order cognitive networks and highlight the key nodes closely associated with cognitive decline during cognitive processing in ARHL, providing new insights into the mechanism of cognitive impairment and suggesting potential treatments related to ARHL.


Assuntos
Disfunção Cognitiva , Conectoma , Presbiacusia , Humanos , Idoso , Conectoma/métodos , Cognição , Fatores de Risco , Imageamento por Ressonância Magnética/métodos
2.
Hear Res ; 431: 108726, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36905854

RESUMO

Hyperacusis, a debilitating loudness intolerance disorder, has been linked to chronic stress and adrenal insufficiency. To investigate the role of chronic stress, rats were chronically treated with corticosterone (CORT) stress hormone. Chronic CORT produced behavioral evidence of loudness hyperacusis, sound avoidance hyperacusis, and abnormal temporal integration of loudness. CORT treatment did not disrupt cochlear or brainstem function as reflected by normal distortion product otoacoustic emissions, compound action potentials, acoustic startle reflexex, and auditory brainstem responses. In contrast, the evoked response from the auditory cortex was enhanced up to three fold after CORT treatment. This hyperactivity was associated with a significant increase in glucocorticoid receptors in auditory cortex layers II/III and VI. Basal serum CORT levels remained normal after chronic CORT stress whereas reactive serum CORT levels evoked by acute restraint stress were blunted (reduced) after chronic CORT stress; similar changes were observed after chronic, intense noise stress. Taken together, our results show for the first time that chronic stress can induce hyperacusis and sound avoidance. A model is proposed in which chronic stress creates a subclinical state of adrenal insufficiency that establishes the necessary conditions for inducing hyperacusis.


Assuntos
Córtex Auditivo , Hiperacusia , Ratos , Animais , Estimulação Acústica/métodos , Ruído , Potenciais Evocados Auditivos do Tronco Encefálico
3.
Hear Res ; 428: 108684, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36599258

RESUMO

Hearing loss is the third most prevalent chronic health condition affecting older adults and age-related hearing loss (ARHL) is the most common form of hearing impairment. Significant sex differences in hearing have been documented in humans and rodents. In general, the results of these studies show that men lose their hearing more rapidly than women. However, the cellular mechanism underlying sex differences in hearing or hearing loss remains largely unknown, and to our knowledge, there is no well-established animal model for studying sex differences in hearing. In the current study, we examined sex differences in body composition, voluntary wheel running activity, balance performance, auditory function, and cochlear histology in young, middle-age, and old CBA/CaJ mice, a model of age-related hearing loss. As expected, body weight of young females was lower than that of males. Similarly, lean mass and total water mass of young, middle-age, and old females were lower than those of males. Young females showed higher voluntary wheel running activity during the dark cycle, an indicator of mobility, physical activity, and balance status, compared to males. Young females also displayed higher auditory brainstem response (ABR) wave I amplitudes at 8 kHz, wave II, III, V amplitudes at 8 and 48 kHz, and wave IV/I and V/I amplitude ratios at 48 kHz compared to males. Collectively, our findings suggest that the CBA/CaJ mouse strain is a useful model to study the cellular mechanisms underlying sex differences in physical activity and hearing.


Assuntos
Longevidade , Presbiacusia , Camundongos , Pessoa de Meia-Idade , Animais , Feminino , Humanos , Masculino , Idoso , Envelhecimento/fisiologia , Caracteres Sexuais , Atividade Motora , Limiar Auditivo/fisiologia , Camundongos Endogâmicos CBA , Audição , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Composição Corporal
4.
CNS Neurosci Ther ; 29(3): 932-940, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36377461

RESUMO

AIMS: This study aimed to explore the neural substrate of hearing loss-related central nervous system in rats and its correlation with cognition. METHODS: We identified the neural mechanism for these debilitating abnormalities by inducing a bilateral hearing loss animal model using intense broadband noise (122 dB of broadband noise for 2 h) and used the Morris water maze test to characterize the behavioral changes at 6 months post-noise exposure. Functional magnetic resonance imaging (fMRI) was conducted to clarify disrupted functional network using bilateral auditory cortex (ACx) as a seed. Structural diffusion tensor imaging (DTI) was applied to illustrate characteristics of fibers in ACx and hippocampus. Pearson correlation was computed behavioral tests and other features. RESULTS: A deficit in spatial learning/memory, body weight, and negative correlation between them was observed. Functional connectivity revealed weakened coupling within the ACx and inferior colliculus, lateral lemniscus, the primary motor cortex, the olfactory tubercle, hippocampus, and the paraflocculus lobe of the cerebellum. The fiber number and mean length of ACx and different hippocampal subregions were also damaged in hearing loss rats. CONCLUSION: A new model of auditory-limbic-cerebellum interactions accounting for noise-induced hearing loss and cognitive impairments is proposed.


Assuntos
Disfunção Cognitiva , Perda Auditiva Provocada por Ruído , Ratos , Animais , Perda Auditiva Provocada por Ruído/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Vias Auditivas , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Cerebelo
5.
Hear Res ; 428: 108667, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36566642

RESUMO

The startle reflex (SR), a robust, motor response elicited by an intense auditory, visual, or somatosensory stimulus has been widely used as a tool to assess psychophysiology in humans and animals for almost a century in diverse fields such as schizophrenia, bipolar disorder, hearing loss, and tinnitus. Previously, SR waveforms have been ignored, or assessed with basic statistical techniques and/or simple template matching paradigms. This has led to considerable variability in SR studies from different laboratories, and species. In an effort to standardize SR assessment methods, we developed a machine learning algorithm and workflow to automatically classify SR waveforms in virtually any animal model including mice, rats, guinea pigs, and gerbils obtained with various paradigms and modalities from several laboratories. The universal features common to SR waveforms of various species and paradigms are examined and discussed in the context of each animal model. The procedure describes common results using the SR across species and how to fully implement the open-source R implementation. Since SR is widely used to investigate toxicological or pharmaceutical efficacy, a detailed and universal SR waveform classification protocol should be developed to aid in standardizing SR assessment procedures across different laboratories and species. This machine learning-based method will improve data reliability and translatability between labs that use the startle reflex paradigm.


Assuntos
Reflexo de Sobressalto , Zumbido , Humanos , Ratos , Camundongos , Animais , Cobaias , Reflexo de Sobressalto/fisiologia , Estimulação Acústica/métodos , Reprodutibilidade dos Testes , Modelos Animais de Doenças , Gerbillinae
6.
Hear Res ; 426: 108648, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36395696

RESUMO

Hyperacusis is a debilitating loudness intolerance disorder that can evoke annoyance, fear and aural facial pain. Although the auditory system seems to be the "central" player, hyperacusis is linked to more than twenty non-auditory medical disorders such as Williams syndrome, autism spectrum disorder, fibromyalgia, migraine, head trauma, lupus and acoustic shock syndrome. Neural models suggest that some forms of hyperacusis may result from enhanced central gain, a process by which neural signals from a damaged cochlea are progressively amplified as activity ascends rostrally through the classical auditory pathway as well as other non-auditory regions of the brain involved in emotions, memory and stress. Imaging studies have begun to reveal the extended neural networks and patterns of functional connectivity in the brain that enrich sounds with negative attributes that can make listening unbearable and even painful. The development of animal models of hyperacusis have enabled researcher to begin to critically evaluate the biological bases of hyperacusis, identify therapies to ameliorate the symptoms and gain a better understanding of the neural mechanisms involved in loudness coding in normal and hearing impaired subjects.


Assuntos
Transtorno do Espectro Autista , Hiperacusia , Animais , Medo , Dor , Emoções
7.
PLoS Genet ; 18(11): e1010477, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36350884

RESUMO

Myelin is essential for rapid nerve impulse propagation and axon protection. Accordingly, defects in myelination or myelin maintenance lead to secondary axonal damage and subsequent degeneration. Studies utilizing genetic (CNPase-, MAG-, and PLP-null mice) and naturally occurring neuropathy models suggest that myelinating glia also support axons independently from myelin. Myelin protein zero (MPZ or P0), which is expressed only by Schwann cells, is critical for myelin formation and maintenance in the peripheral nervous system. Many mutations in MPZ are associated with demyelinating neuropathies (Charcot-Marie-Tooth disease type 1B [CMT1B]). Surprisingly, the substitution of threonine by methionine at position 124 of P0 (P0T124M) causes axonal neuropathy (CMT2J) with little to no myelin damage. This disease provides an excellent paradigm to understand how myelinating glia support axons independently from myelin. To study this, we generated targeted knock-in MpzT124M mutant mice, a genetically authentic model of T124M-CMT2J neuropathy. Similar to patients, these mice develop axonopathy between 2 and 12 months of age, characterized by impaired motor performance, normal nerve conduction velocities but reduced compound motor action potential amplitudes, and axonal damage with only minor compact myelin modifications. Mechanistically, we detected metabolic changes that could lead to axonal degeneration, and prominent alterations in non-compact myelin domains such as paranodes, Schmidt-Lanterman incisures, and gap junctions, implicated in Schwann cell-axon communication and axonal metabolic support. Finally, we document perturbed mitochondrial size and distribution along MpzT124M axons suggesting altered axonal transport. Our data suggest that Schwann cells in P0T124M mutant mice cannot provide axons with sufficient trophic support, leading to reduced ATP biosynthesis and axonopathy. In conclusion, the MpzT124M mouse model faithfully reproduces the human neuropathy and represents a unique tool for identifying the molecular basis for glial support of axons.


Assuntos
Doença de Charcot-Marie-Tooth , Humanos , Camundongos , Animais , Doença de Charcot-Marie-Tooth/genética , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Axônios/metabolismo , Neuroglia , Camundongos Knockout , Modelos Animais de Doenças , Comunicação
8.
Brain Imaging Behav ; 16(6): 2725-2734, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36327020

RESUMO

Presbycusis is a major public issue that affecting elderly adults. However, the neural substrates between normal cognition and cognitive deficits in these patients need to be illustrated. 47 patients with presbycusis and 33 well-matched healthy controls were recruited in present study. Each subject underwent pure-tone audiometry (PTA), MRI scanning and cognition evaluations, then we found 22 patients with cognitive deficits and 25 patients with common cognition. We analyzed the Degree centrality (DC) characteristics among three groups, and try to recognize key nodes which contribute significantly. Subsequent functional connectivity analysis was applied using the key nodes as seeds. Compared with controls, presbycusis without cognitive impairments showed deceased DC in superior temporal gyrus (STG), inferior frontal gyrus (IFG) and supramarginal gyrus (SMG). Additionally, presbycusis with cognitive impairments showed enhanced DC in fusiform gurus (FFG), cerebellum and para-hippocampal gyrus (PHG), while weakened DC in SMG, middle frontal gyrus (IFG) and inferior Parietal lobule (IPL). Compared with normal cognition, increased DC value of cerebellum and STG, as well as decreased DC value of IPL in presbycusis with cognitive impairments were observed. We noticed that SMG may play an important role. Then the left and right SMG were used as seeds in functional connections analysis. With the seed set at left SMG, presbycusis without cognitive impairments showed decreases connections with cerebellum, temporal pole (TP), superior temporal gyrus (STG) and median cingulate cortex (MCC). Presbycusis with cognitive impairments showed weakened connectivity with cerebellum, IFG, IPL and superior frontal gyrus (SFG). The right SMG showed decrease connections with cerebellum, middle temporal gyrus (MTG), STG and increase connection with middle frontal gyrus (MFG) in presbycusis without cognitive impairments. While the right SMG showed enhanced connections with left TP, caudate, anterior cingulate cortex (ACC), angular, SFG and weakened connectivity with right SFG presbycusis with cognitive impairments. In comparison with normal cognition and impaired cognition, MFG, IFG, PHG, rolandic operculum and cerebellum were involved. These findings enriched our understanding of the neural mechanisms underlying cognitive impairments associated with presbycusis and may serve as a potential imaging biomarker for investigating and predicting cognitive difficulties.


Assuntos
Disfunção Cognitiva , Presbiacusia , Adulto , Humanos , Idoso , Imageamento por Ressonância Magnética/métodos , Encéfalo , Presbiacusia/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Lobo Parietal
9.
Hear Res ; 424: 108602, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36103788

RESUMO

Sex differences in the development of sensorineural hearing loss have been recognized in various inner ear disorders, but the molecular basis for such differences is poorly understood. Autosomal genes have been shown to cause sex differences in disease susceptibility, but many genes exerting sex-dependent effects on auditory function remain to be identified. Galectin-3 (Gal-3), a protein encoded by the autosomal gene Lgals3, is a member of the ß-galactoside-binding protein family, and has been linked to multiple biological processes, including immune responses, apoptosis, and cell adhesion. Here, we investigated auditory function and hair cell integrity in Gal-3 knockout (KO, Lgals3-/-) and wild-type (WT, Lgals3+/+) mice from age 1 to 6 months. KO mice show a more rapid age-related increase in ABR thresholds compared to WT mice. Noticeably, the threshold deterioration in female KO mice is significantly greater than in the male KO and WT mice. The ABR threshold elevation manifests over a broad frequency range in female KO mice, whereas the threshold elevations are confined to high frequencies in the male KO and WT mice. Moreover, DPOAE input/output functions reveal a similar pattern of auditory dysfunction, with the female KO mice displaying a significantly greater reduction in DPOAE amplitudes than male KO mice and WT mice of both sexes. Finally, age-related outer hair cell loss is greater for female KO mice compared to male KO mice and WT mice of both sexes. Together, these results indicate that Gal-3 deficiency exacerbates age-related cochlear degeneration and auditory dysfunction in female mice. Our study identifies Gal-3 as a sex-dependent molecule for maintaining female cochlear integrity.


Assuntos
Galectina 3 , Audição , Animais , Limiar Auditivo/fisiologia , Cóclea , Potenciais Evocados Auditivos do Tronco Encefálico , Feminino , Galectina 3/genética , Galectina 3/metabolismo , Células Ciliadas Auditivas Externas/fisiologia , Masculino , Camundongos , Camundongos Knockout
10.
Front Genet ; 13: 936128, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991545

RESUMO

Hearing impairment is a cardinal feature of Down syndrome (DS), but its clinical manifestations have been attributed to multiple factors. Murine models could provide mechanistic insights on various causes of hearing loss in DS. To investigate mechanisms of hearing loss in DS in the absence of the cadherin 23 mutation, we backcrossed our DS mice, Dp(16)1Yey, onto normal-hearing CBA/J mice and evaluated their auditory function. Body weights of wild type (WT) and DS mice were similar at 3-months of age, but at 9-months, WT weighed 30% more than DS mice. Distortion product otoacoustic emissions (DPOAE), a test of sensory outer hair cell (OHC) function negatively impacted by conductive hearing loss, were reduced in amplitude and sensitivity across all frequencies in DS mice. The middle ear space in DS mice appeared normal with no evidence of infection. MicroCT structural imaging of DS temporal bones revealed a smaller tympanic membrane diameter, oval window, and middle ear space and localized thickening of the bony otic capsule, but no gross abnormalities of the middle ear ossicles. Histological analysis of the cochlear and vestibular sensory epithelium revealed a normal density of cochlear and vestibular hair cells; however, the cochlear basal membrane was approximately 0.6 mm shorter in DS than WT mice so that the total number of hair cells was greater in WT than DS mice. In DS mice, the early and late peaks in the auditory brainstem response (ABR), reflecting neural responses from the cochlear auditory nerve followed by subsequent neural centers in the brainstem, were reduced in amplitude and ABR thresholds were elevated to a similar degree across all frequencies, consistent with a conductive hearing impairment. The latency of the peaks in the ABR waveform were longer in DS than WT mice when compared at the same intensity; however, the latency delays disappeared when the data were compared at the same intensity above thresholds to compensate for the conductive hearing loss. Future studies using wideband tympanometry and absorbance together with detailed histological analysis of the middle ear could illuminate the nature of the conductive hearing impairment in DS mice.

11.
Hear Res ; 422: 108567, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35816891

RESUMO

BACKGROUND: While ear stimulation produces a robust response in the contralateral auditory cortex (AC), it produces only a weak response in the ipsilateral AC, known as interhemispheric asymmetry. Unilateral deafness can lead to AC plastic changes, resulting in reduced interhemispheric asymmetry and auditory perceptual consequences. However, the unilateral hearing loss-associated plastic changes are far from fully understood. The purpose of this study was to investigate AC responses to the ipsilateral unimpaired ear after noise injury to the contralateral ear in juvenile rats. METHODS: Rats (50 days) were monaurally exposed to an intense noise (10.0-12.5 kHz, 126 dB SPL) for 2 hours. The unexposed ear-induced ipsilateral AC responses were recorded 2 days and 4 months after exposure and compared between groups. RESULTS: The noise exposure resulted in complete hearing loss in the exposed ear, but normal function in the other. Two days after exposure, the ipsilateral AC response induced by the intact ear was significantly enhanced and the threshold decreased (the early-onset effect). Four months after noise exposure, in addition to the increased response amplitude, the "slow-increasing" firing pattern of the neurons in the ipsilateral AC turned into the contralateral-AC-response-like "sharp-increasing" pattern (the late-onset effect) with shortened response latency. DISCUSSION: The early-onset effect can result from release of inhibition due to decreased contralateral input, while the late-onset effect may imply the formation of direct connections in the ipsilateral auditory pathway. The enhanced AC response may help maintain loudness perception and monaural sound localization after unilateral deafness.


Assuntos
Córtex Auditivo , Surdez , Perda Auditiva Unilateral , Ratos , Animais , Córtex Auditivo/fisiologia , Perda Auditiva Unilateral/etiologia , Ruído/efeitos adversos , Vias Auditivas/fisiologia , Estimulação Acústica/métodos
12.
CNS Neurosci Ther ; 28(10): 1547-1556, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35726754

RESUMO

AIMS: We aimed to find where and how noise-induced cochlear hearing loss affects the central nervous system during the early state and identify the neural substrate for aberrant patterns that mediating noise-related anxiety-/depression- like behaviors. METHODS: Broad band noise with 122 dB for 2 hours was conducted to induce hearing loss. We defined 0 day (N0D) and 10 days (N10D) post noise as the acute and sub-acute period. Behavioral tests (Open field test and light/dark test) and resting-state fMRI were computed to evaluate emotional conditions and aberrant neural activity. Functional connectivity analysis using the anterior cingulate cortex as a seed was computed to reveal the spatial distribution beyond auditory network during both periods. RESULTS: Anxiety-/depression-like behaviors were found in rats with noise exposure. Between-group analysis revealed that N0D rats displayed widespread reductions in functional connectivity, spanning primary somatosensory cortex, medial geniculate body, inferior colliculus, cingulate cortex, cerebellar lobule comparing with N10D rats and a similar pattern was also occurred in comparison with the control group. CONCLUSION: Taken together, an "acoustic-causing" network accounting for distress and gating of noise exposure related anxiety/depression was proposed.


Assuntos
Giro do Cíngulo , Imageamento por Ressonância Magnética , Animais , Cerebelo , Giro do Cíngulo/diagnóstico por imagem , Ratos
13.
Brain Imaging Behav ; 16(4): 1884-1892, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35543862

RESUMO

This study aimed to investigate the alterations of cognition and functional connectivity post noise, and find the progress and neural substrates of noise induced hearing loss (NIHL)-associated cognitive impairment. We exposed rats to 122 dB broad-band noise for 2 h to induce hearing loss and the auditory function was assessed by measuring auditory brainstem response thresholds. Morris water maze test and resting state MRI were computed at 0 day, 1, 3, 6 months post noise to reveal cognitive ability and neural substrate. The interregional connections in the auditory network and default mode network, as well as the connections using the auditory cortex and cingulate cortex as seeds were also examined addtionally. The deficit in spatial learning/memory was only observed at 6 months after noise exposure. The internal connections in the auditory network and default mode network were enhanced at 0 day and decreased at 6 months post noise. The connectivity using the auditory cortex and cingulate cortex as seeds generally followed the rule of "enhancement-normal-decrease-widely decrease". A new model accounting for arousal, dementia, motor control of NIHL in is proposed. Our study highlights the fundamental flexibility of neural systems, and may also point toward novel therapeutic strategies for treating sensory disorders.


Assuntos
Córtex Auditivo , Perda Auditiva Provocada por Ruído , Animais , Córtex Auditivo/diagnóstico por imagem , Cognição , Imageamento por Ressonância Magnética , Ruído/efeitos adversos , Ratos
14.
Front Integr Neurosci ; 16: 871223, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35619926

RESUMO

Noise-induced hearing loss (NIHL), caused by direct damage to the cochlea, reduces the flow of auditory information to the central nervous system, depriving higher order structures, such as the hippocampus with vital sensory information needed to carry out complex, higher order functions. Although the hippocampus lies outside the classical auditory pathway, it nevertheless receives acoustic information that influence its activity. Here we review recent results that illustrate how NIHL and other types of cochlear hearing loss disrupt hippocampal function. The hippocampus, which continues to generate new neurons (neurogenesis) in adulthood, plays an important role in spatial navigation, memory, and emotion. The hippocampus, which contains place cells that respond when a subject enters a specific location in the environment, integrates information from multiple sensory systems, including the auditory system, to develop cognitive spatial maps to aid in navigation. Acute exposure to intense noise disrupts the place-specific firing patterns of hippocampal neurons, "spatially disorienting" the cells for days. More traumatic sound exposures that result in permanent NIHL chronically suppresses cell proliferation and neurogenesis in the hippocampus; these structural changes are associated with long-term spatial memory deficits. Hippocampal neurons, which contain numerous glucocorticoid hormone receptors, are part of a complex feedback network connected to the hypothalamic-pituitary (HPA) axis. Chronic exposure to intense intermittent noise results in prolonged stress which can cause a persistent increase in corticosterone, a rodent stress hormone known to suppress neurogenesis. In contrast, a single intense noise exposure sufficient to cause permanent hearing loss produces only a transient increase in corticosterone hormone. Although basal corticosterone levels return to normal after the noise exposure, glucocorticoid receptors (GRs) in the hippocampus remain chronically elevated. Thus, NIHL disrupts negative feedback from the hippocampus to the HPA axis which regulates the release of corticosterone. Preclinical studies suggest that the noise-induced changes in hippocampal place cells, neurogenesis, spatial memory, and glucocorticoid receptors may be ameliorated by therapeutic interventions that reduce oxidative stress and inflammation. These experimental results may provide new insights on why hearing loss is a risk factor for cognitive decline and suggest methods for preventing this decline.

15.
EBioMedicine ; 76: 103862, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35104784

RESUMO

BACKGROUND: The aberrant brain network that gives rise to the phantom sound of tinnitus is believed to determine the effectiveness of tinnitus therapies involving neuromodulation with repetitive transcranial magnetic stimulation (rTMS) and sound therapy utilizing tailor-made notch music training (TMNMT). To test this hypothesis, we determined how effective rTMS or TMNMT were in ameliorating tinnitus in patients with different functional brain networks. METHODS: Resting-state functional MRI was used to construct brain functional networks in patients with tinnitus (41 males/45 females, mean age 49.53±11.19 years) and gender-matched healthy controls (22 males/35 females, mean age 46.23±10.23 years) with independent component analysis (ICA). A 2 × 2 analysis of variance with treatment outcomes (Effective group, EG/Ineffective group, IG) and treatment types (rTMS/TMNMT) was used to test the interaction between outcomes and treatment types associated with functional network connections (FNCs). FINDINGS: The optimal neuroimaging indicator for responding to rTMS (AUC 0.804, sensitivity 0.700, specificity 0.913) was FNCs in the salience network-right frontoparietal network (SN-RFPN) while for responding to TMNMT (AUC 0.764, sensitivity 0.864, specificity 0.667) was the combination of FNCs in the auditory network- salience network (AUN-SN) and auditory network-cerebellar network (AUN-CN). INTERPRETATION: Tinnitus patients with higher FNCs in the SN-RFPN is associated with a recommendation for rTMS whereas patients with lower FNCs in the AUN-SN and AUN-CN would suggest TMNMT as the better choice. These results indicate that brain network-based measures aid in the selection of the optimal form of treatment for a patient contributing to advances in precision medicine. FUNDING: Yuexin Cai is supported by Key R&D Program of Guangdong Province, China (Grant No. 2018B030339001), National Natural Science Foundation of China (82071062), Natural Science Foundation of Guangdong province (2021A1515012038), the Fundamental Research Funds for the Central Universities (20ykpy91), and Sun Yat-Sen Clinical Research Cultivating Program (SYS-Q-201903). Yu-Chen Chen is supported by Medical Science and Technology Development Foundation of Nanjing Department of Health (No. ZKX20037), and Natural Science Foundation of Jiangsu Province (No. BK20211008).


Assuntos
Córtex Auditivo , Zumbido , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Zumbido/diagnóstico por imagem , Zumbido/terapia , Estimulação Magnética Transcraniana/métodos , Resultado do Tratamento
16.
Hear Res ; 415: 108441, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35065507

RESUMO

The acoustic startle reflex (ASR) amplitude can be enhanced or suppressed by noise-induced hearing loss or age-related hearing loss; however, little is known about how the ASR changes when ototoxic drugs destroy outer hair cells (OHCs) and inner hair cells (IHCs). High doses of 2-hydroxypropyl-beta-cyclodextrin (HPßCD), a cholesterol-lowering drug used to treat Niemann-Pick Type disease type C1, initially destroy OHCs and then the IHCs 6-8 weeks later. Adult rats were treated with doses of HPßCD designed to produce a diversity of hair cell lesions and hearing losses. When HPßCD destroyed OHCs and IHCs in the extreme base of the cochlea and caused minimal high-frequency hearing loss, the ASR amplitudes were enhanced at 4-, 8- and 16 kHz. Enhanced ASR occurred during the first few weeks post-treatment when only OHCs were missing; little change in the ASR occurred 6-8-WK post-treatment. If HPßCD destroyed most OHCs and many IHCs in the basal half of the cochlea, high-frequency thresholds increased ∼50 dB, and ASR amplitudes were reduced ∼50% at 4-, 8- and 16-kHz. The ASR amplitude reduction occurred in the first few weeks post-treatment when the OHCs were degenerating. The ASR was largely abolished when most of the OHCs were missing over the basal two-thirds of the cochlea and a 40-50 dB hearing loss was present at most frequencies. These results indicate that high-doses of HPßCD generally lead to a decline in ASR amplitude as OHCs degenerate; however, ASR amplitudes were enhanced in a few cases when hair cell loss was confined to the extreme base of the cochlea.


Assuntos
Ciclodextrinas , Presbiacusia , Animais , Cóclea/patologia , Células Ciliadas Auditivas Internas/patologia , Células Ciliadas Auditivas Externas/patologia , Presbiacusia/patologia , Ratos , Reflexo de Sobressalto
17.
Hear Res ; 415: 108396, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34903423

RESUMO

BACKGROUND: Levetiracetam (LEV, 5-100 mg/kg) has been shown to prevent audiogenic seizures in a dose-dependent manner. This chemical is known to bind to synaptic vesicle protein 2A and inhibit l-type calcium channels, affecting neurotransmitter release. We hypothesize that the drug prevents audiogenic seizures partially by affecting cochlear neural response. METHODS: To test this hypothesis, rats were given 1000, 500, 50, or 0 mg/kg (saline control) LEV-injection. Distortion product otoacoustic emissions (DPOAE), reflecting outer hair cell (OHC) function, and cochlear compound action potentials (CAP), reflecting cochlear neural output, were recorded and compared pre- and post-LEV. RESULTS: 1000 mg/kg LEV-injection did not significantly affect DPOAE. The high dose LEV-injection, however, significantly reduced CAP amplitude resulting threshold shift (TS), prolonged CAP latency, and enhanced CAP forward masking. CAP latency and forward masking were significantly affected at the 500 mg/kg dose, but CAP-TS remained unchanged after LEV-injection. Interestingly, CAP latency wassignificantly prolonged, at least at the low stimulation levels, although the amplitude of CAP remained constant after a clinical dose of LEV-injection (50 mg/kg). DISCUSSION: Since the clinical dose of LEV-injection does not reduce CAP amplitude, the reduction of cochlear neural output is unlikely to be the underlying mechanism of LEV in the treatment of audiogenic seizure. The delayed cochlear neural response may be partially related to the prevention of audiogenic seizure. However, neuropharmacological changes in the central nervous system must play a major role in the treatment of audiogenic seizure, as it does in the treatment of focal epilepsy.


Assuntos
Epilepsia Reflexa , Piracetam , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Epilepsia Reflexa/metabolismo , Levetiracetam , Piracetam/metabolismo , Piracetam/farmacologia , Ratos , Vesículas Sinápticas
18.
Hear Res ; 414: 108409, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34953289

RESUMO

Niemann-Pick C1 (NPC1) is a fatal neurodegenerative disease caused by aberrant cholesterol metabolism. The progression of the disease can be slowed by removing excess cholesterol with high-doses of 2-hyroxypropyl-beta-cyclodextrin (HPßCD). Unfortunately, HPßCD causes hearing loss; the initial first phase involves a rapid destruction of outer hair cells (OHCs) while the second phase, occurring 4-6 weeks later, involves the destruction of inner hair cells (IHCs), pillar cells, collapse of the organ of Corti and spiral ganglion neuron degeneration. To determine whether the first and/or second phase of HPßCD-induced cochlear damage is linked, in part, to excess oxidative stress or neuroinflammation, rats were treated with a single-dose of 3000 mg/kg HPßCD alone or together with one of two combination therapies. Each combination therapy was administered from 2-days before to 6-weeks after the HPßCD treatment. Combination 1 consisted of minocycline, an antibiotic that suppresses neuroinflammation, and HK-2, a multifunctional redox modulator that suppresses oxidative stress. Combination 2 was comprised of minocycline plus N-acetyl cysteine (NAC), which upregulates glutathione, a potent antioxidant. To determine if either combination therapy could prevent HPßCD-induced hearing impairment and cochlear damage, distortion product otoacoustic emissions (DPOAE) were measured to assess OHC function and the cochlear compound action potential (CAP) was measured to assess the function of IHCs and auditory nerve fibers. Cochleograms were prepared to quantify the amount of OHC, IHC and pillar cell (PC) loss. HPßCD significantly reduced DPOAE and CAP amplitudes and caused significant OHC, IHC and OPC losses with losses greater in the high-frequency base of the cochlea than the apex. Neither minocycline + HK-2 (MIN+ HK-2) nor minocycline + NAC (MIN+NAC) prevented the loss of DPOAEs, CAPs, OHCs, IHCs or IPCs caused by HPßCD. These results suggest that oxidative stress and neuroinflammation are unlikely to play major roles in mediating the first or second phase of HPßCD-induced cochlear damage. Thus, HPßCD-induced ototoxicity must be mediated by some other unknown cell-death pathway possibly involving loss of trophic support from damaged support cells or disrupted cholesterol metabolism.


Assuntos
Ciclodextrinas , Perda Auditiva , Doenças Neurodegenerativas , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Cóclea , Ciclodextrinas/farmacologia , Células Ciliadas Auditivas Externas/fisiologia , Perda Auditiva/induzido quimicamente , Perda Auditiva/prevenção & controle , Emissões Otoacústicas Espontâneas , Ratos
19.
Neurobiol Dis ; 161: 105541, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34751141

RESUMO

Fragile X (FX) syndrome is one of the leading inherited causes of autism spectrum disorder (ASD). A majority of FX and ASD patients exhibit sensory hypersensitivity, including auditory hypersensitivity or hyperacusis, a condition in which everyday sounds are perceived as much louder than normal. Auditory processing deficits in FX and ASD also afford the opportunity to develop objective and quantifiable outcome measures that are likely to translate between humans and animal models due to the well-conserved nature of the auditory system and well-developed behavioral read-outs of sound perception. Therefore, in this study we characterized auditory hypersensitivity in a Fmr1 knockout (KO) transgenic rat model of FX using an operant conditioning task to assess sound detection thresholds and suprathreshold auditory reaction time-intensity (RT-I) functions, a reliable psychoacoustic measure of loudness growth, at a variety of stimulus frequencies, bandwidths, and durations. Male Fmr1 KO and littermate WT rats both learned the task at the same rate and exhibited normal hearing thresholds. However, Fmr1 KO rats had faster auditory RTs over a broad range of intensities and steeper RT-I slopes than WT controls, perceptual evidence of excessive loudness growth in Fmr1 KO rats. Furthermore, we found that Fmr1 KO animals exhibited abnormal perceptual integration of sound duration and bandwidth, with diminished temporal but enhanced spectral integration of sound intensity. Because temporal and spectral integration of sound stimuli were altered in opposite directions in Fmr1 KO rats, this suggests that abnormal RTs in these animals are evidence of aberrant auditory processing rather than generalized hyperactivity or altered motor responses. Together, these results are indicative of fundamental changes to low-level auditory processing in Fmr1 KO animals. Finally, we demonstrated that antagonism of metabotropic glutamate receptor 5 (mGlu5) selectively and dose-dependently restored normal loudness growth in Fmr1 KO rats, suggesting a pharmacologic approach for alleviating sensory hypersensitivity associated with FX. This study leverages the tractable nature of the auditory system and the unique behavioral advantages of rats to provide important insights into the nature of a centrally important yet understudied aspect of FX and ASD.


Assuntos
Síndrome do Cromossomo X Frágil , Hiperacusia , Animais , Transtorno do Espectro Autista/genética , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/complicações , Síndrome do Cromossomo X Frágil/genética , Camundongos Knockout , Ratos , Ratos Transgênicos
20.
Hear Res ; 411: 108358, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34607211

RESUMO

Excess release of glutamate at the inner hair cell-type I auditory nerve synapse results in excitotoxicity characterized by rapid swelling and disintegration of the afferent synapses, but in some cases, the damage expands to the spiral ganglion soma. Cochlear excitotoxic damage is largely mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR) and kainate receptor (KAR) and potentially N-methyl-D-aspartate receptors (NMDAR). Because these receptors are developmentally regulated, the pattern of excitotoxic damage could change during development. To test this hypothesis, we compared AMPAR, NMDAR and KAR immunolabeling and excitotoxic damage patterns in rat postnatal day 3 (P3) and adult cochlear cultures. At P3, AMPAR and KAR immunolabeling, but not NMDAR, was abundantly expressed on peripheral nerve terminals adjacent to IHCs. In contrast, AMPAR, KAR and NMDAR immunolabeling was minimal or undetectable on the SGN soma. In adult rats, however, AMPAR, KAR and NMDAR immunolabeling occurred on both peripheral nerve terminals near IHCs as well as the soma of SGNs. High doses of Glu and KA only damaged peripheral nerve terminals near IHCs, but not SGNs, at P3, consistent with selective expression of AMPAR and KAR expression on the terminals. However, in adults, Glu and KA damaged both peripheral nerve terminals near IHCs and SGNs both of which expressed AMPAR and KAR. These results indicate that cochlear excitotoxic damage is closely correlated with structures that express AMPAR and KAR.


Assuntos
Gânglio Espiral da Cóclea , Animais , Ácido Glutâmico , Células Ciliadas Auditivas Internas , Neurônios , Ratos , Receptores de N-Metil-D-Aspartato , Regulação para Cima , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...