Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 48(2): 1161-1169, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33547534

RESUMO

Hypoxia is associated with tumor aggressiveness and poor prognosis, including breast cancer. Low oxygen levels induces global genomic hypomethylation and hypermethylation of specific loci in tumor cells. DNA methylation is a reversible epigenetic modification, usually associated with gene silencing, contributing to carcinogenesis and tumor progression. Since the effects of DNA methyltransferase inhibitor are context-dependent and as there is little data comparing their molecular effects in normoxic and hypoxic microenvironments in breast cancer, this study aimed to understand the gene expression profiles and molecular effects in response to treatment with DNA methyltransferase inhibitor in normoxia and hypoxia, using the breast cancer model. For this, a cDNA microarray was used to analyze the changes in the transcriptome upon treatment with DNA methyltransferase inhibitor (5-Aza-2'-deoxycytidine: 5-Aza-2'-dC), in normoxia and hypoxia. Furthermore, immunocytochemistry was performed to investigate the effect of 5-Aza-2'-dC on NF-κB/p65 inflammation regulator subcellular localization and expression, in normoxia and hypoxia conditions. We observed that proinflammatory pathways were upregulated by treatment with 5-Aza-2'-dC, in both conditions. However, treatment with 5-Aza-2'-dC in normoxia showed a greater amount of overexpressed proinflammatory pathways than 5-Aza-2'-dC in hypoxia. In this sense, we observed that the NF-κB expression increased only upon 5-Aza-2'-dC in normoxia. Moreover, nuclear staining for NF-κB and NF-κB target genes upregulation, IL1A and IL1B, were also observed after 5-Aza-2'-dC in normoxia. Our results suggest that 5-Aza-2'-dC induces a greater inflammatory change, at the molecular levels, in normoxic than hypoxic tumor microenvironment. These data may support further studies and expand the understanding of the DNA methyltransferase inhibitor effects in different tumor contexts.


Assuntos
Metilação de DNA/efeitos dos fármacos , Metilases de Modificação do DNA/genética , Decitabina/farmacologia , Inflamação/genética , Acetilação/efeitos dos fármacos , Linhagem Celular Tumoral , Metilases de Modificação do DNA/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Epigênese Genética/genética , Humanos , Inflamação/induzido quimicamente , Inflamação/patologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Fator de Transcrição RelA/genética , Hipóxia Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...