Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
Eur J Hum Genet ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38486025

RESUMO

The ACTA2 gene codes for alpha-smooth muscle actin, a critical component of the contractile apparatus of the vascular smooth muscle cells. Autosomal dominant variants in the ACTA2 gene have been associated to familial non-syndromic thoracic aortic aneurysm/dissection (TAAD). They are thought to act through a dominant-negative mechanism. These variants display incomplete penetrance and variable expressivity, complicating the validation of ACTA2 variants pathogenicity by family segregation studies. In this study, we developed a yeast based assay to test putative TAAD-associated ACTA2 variants. We identified five new heterozygous ACTA2 missense variants in TAAD patients through next generation sequencing. We decided to test their pathogenicity in Saccharomyces cerevisiae, since yeast actin is very similar to human alpha-smooth muscle actin, and the residues at which the TAAD-associated variants occur in ACTA2 are well conserved. A wild type yeast strain was transformed with a vector expressing the different mutant alleles, to model the heterozygous condition of patients. Then, we evaluated yeast growth by spot test and cytoskeletal and mitochondrial morphology by fluorescence microscopy. We found that mutant yeast strains displayed only mild growth defects but a significant increase in the percentage of cells with abnormal mitochondrial distribution and abnormal organization of the actin cytoskeleton compared to controls. All variants appeared to interfere with the activity of wild type actin in yeast, suggesting a dominant-negative pathogenic mechanism. Our results demonstrate the utility of using the yeast actin model system to validate the pathogenicity of TAAD-associated ACTA2 variants.

2.
Eur J Hum Genet ; 32(4): 426-434, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38316953

RESUMO

GEMIN5 exerts key biological functions regulating pre-mRNAs intron removal to generate mature mRNAs. A series of patients were reported harboring mutations in GEMIN5. No treatments are currently available for this disease. We treated two of these patients with oral Coenzyme Q10 (CoQ10), which resulted in neurological improvements, although MRI abnormalities remained. Whole Exome Sequencing demonstrated compound heterozygosity at the GEMIN5 gene in both cases: Case one: p.Lys742* and p.Arg1016Cys; Case two: p.Arg1016Cys and p.Ser411Hisfs*6. Functional studies in fibroblasts revealed a decrease in CoQ10 biosynthesis compared to controls. Supplementation with exogenous CoQ10 restored it to control intracellular CoQ10 levels. Mitochondrial function was compromised, as indicated by the decrease in oxygen consumption, restored by CoQ10 supplementation. Transcriptomic analysis of GEMIN5 patients compared with controls showed general repression of genes involved in CoQ10 biosynthesis. In the rigor mortis defective flies, CoQ10 levels were decreased, and CoQ10 supplementation led to an improvement in the adult climbing assay performance, a reduction in the number of motionless flies, and partial restoration of survival. Overall, we report the association between GEMIN5 dysfunction and CoQ10 deficiency for the first time. This association opens the possibility of oral CoQ10 therapy, which is safe and has no observed side effects after long-term therapy.


Assuntos
Ataxia , Doenças Mitocondriais , Debilidade Muscular , Ubiquinona , Ubiquinona/deficiência , Adulto , Humanos , Ubiquinona/genética , Ubiquinona/uso terapêutico , Ubiquinona/metabolismo , Seguimentos , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/genética , Mutação , Proteínas do Complexo SMN/genética
5.
Mol Cell ; 84(5): 981-989.e7, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38295803

RESUMO

Coenzyme Q (CoQ) is a redox lipid that fulfills critical functions in cellular bioenergetics and homeostasis. CoQ is synthesized by a multi-step pathway that involves several COQ proteins. Two steps of the eukaryotic pathway, the decarboxylation and hydroxylation of position C1, have remained uncharacterized. Here, we provide evidence that these two reactions occur in a single oxidative decarboxylation step catalyzed by COQ4. We demonstrate that COQ4 complements an Escherichia coli strain deficient for C1 decarboxylation and hydroxylation and that COQ4 displays oxidative decarboxylation activity in the non-CoQ producer Corynebacterium glutamicum. Overall, our results substantiate that COQ4 contributes to CoQ biosynthesis, not only via its previously proposed structural role but also via the oxidative decarboxylation of CoQ precursors. These findings fill a major gap in the knowledge of eukaryotic CoQ biosynthesis and shed light on the pathophysiology of human primary CoQ deficiency due to COQ4 mutations.


Assuntos
Células Eucarióticas , Ubiquinona , Humanos , Descarboxilação , Células Eucarióticas/metabolismo , Oxirredução , Escherichia coli/genética , Escherichia coli/metabolismo , Estresse Oxidativo , Proteínas Mitocondriais/metabolismo
7.
Cell Death Dis ; 14(12): 805, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38062036

RESUMO

Friedreich ataxia (FRDA) is a rare, inherited neurodegenerative disease caused by an expanded GAA repeat in the first intron of the FXN gene, leading to transcriptional silencing and reduced expression of frataxin. Frataxin participates in the mitochondrial assembly of FeS clusters, redox cofactors of the respiratory complexes I, II and III. To date it is still unclear how frataxin deficiency culminates in the decrease of bioenergetics efficiency in FRDA patients' cells. We previously demonstrated that in healthy cells frataxin is closely attached to the mitochondrial cristae, which contain both the FeS cluster assembly machinery and the respiratory chain complexes, whereas in FRDA patients' cells with impaired respiration the residual frataxin is largely displaced in the matrix. To gain novel insights into the function of frataxin in the mitochondrial pathophysiology, and in the upstream metabolic defects leading to FRDA disease onset and progression, here we explored the potential interaction of frataxin with the FeS cluster-containing respiratory complexes I, II and III. Using healthy cells and different FRDA cellular models we found that frataxin interacts with these three respiratory complexes. Furthermore, by EPR spectroscopy, we observed that in mitochondria from FRDA patients' cells the decreased level of frataxin specifically affects the FeS cluster content of complex I. Remarkably, we also found that the frataxin-like protein Nqo15 from T. thermophilus complex I ameliorates the mitochondrial respiratory phenotype when expressed in FRDA patient's cells. Our data point to a structural and functional interaction of frataxin with complex I and open a perspective to explore therapeutic rationales for FRDA targeted to this respiratory complex.


Assuntos
Ataxia de Friedreich , Doenças Neurodegenerativas , Humanos , Transporte de Elétrons , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Membranas Mitocondriais/metabolismo , Doenças Neurodegenerativas/metabolismo
8.
Dig Liver Dis ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38071180

RESUMO

BACKGROUND & AIMS: Multiple colorectal adenomas (MCRAs) can result from APC (AFAP) or biallelic MUTYH (MAP) mutations, but most patients are wild type and referred to as non-APC/MUTYH polyposis (NAMP). We aim to examine the risk of colorectal cancer (CRC) and the role of endoscopy in managing patients with MCRAs, with a specific focus on clinical features and genotype. METHODS: Records of MRCAs between 2000 and 2022 were retrospectively analysed. Patients were divided according to the genotype (MAP vs. NAMP) and the number of categorised polyps' burden (group 1: 10-24, group 2: 25-49, and group 3: 50-99 adenomas). Predictors of outcome were CRC-free survival (CRC-FS) and Surgery free-survival (S-FS). RESULTS: 220 patients were enrolled (NAMP n = 178(80.0%)). CRC at diagnosis was more frequent in group 3 (p = 0.01), without significant differences between the genotypes (p = 0.20). At a follow-up of 83(41-164) months, 15(7%) patients developed CRC during surveillance. CRC-FS was not correlated to genotype (p = 0.07) or polyps' number (p = 0.33), while S-FS was similar in MAP and NAMP (p = 0.22) and lower in groups 2 and 3 (p = 0.0001). CONCLUSIONS: MAP and NAMP have the same CRC risk and no difference in treatment. Endoscopic surveillance compared favorably with surgery in avoiding CRC risk, even in patients with more severe colorectal polyposis.

9.
Orphanet J Rare Dis ; 18(1): 358, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974207

RESUMO

BACKGROUND: Zellweger spectrum disorders (ZSD) and X-linked adrenoleukodystrophy (X-ALD) are inherited metabolic diseases characterized by dysfunction of peroxisomes, that are essential for lipid metabolism and redox balance. Oxidative stress has been reported to have a significant role in the pathogenesis of neurodegenerative diseases such as peroxisomal disorders, but little is known on the intracellular activation of Mitogen-activated protein kinases (MAPKs). Strictly related to oxidative stress, a correct autophagic machinery is essential to eliminated oxidized proteins and damaged organelles. The aims of the current study are to investigate a possible implication of MAPK pathways and autophagy impairment as markers and putative therapeutic targets in X-ALD and ZSDs. METHODS: Three patients with ZSD (2 M, 1 F; age range 8-17 years) and five patients with X-ALD (5 M; age range 5- 22 years) were enrolled. A control group included 6 healthy volunteers. To evaluate MAPKs pathway, p-p38 and p-JNK were assessed by western blot analysis on peripheral blood mononuclear cells. LC3II/LC3I ratio was evaluated ad marker of autophagy. RESULTS: X-ALD and ZSD patients showed elevated p-p38 values on average 2- fold (range 1.21- 2.84) and 3.30-fold (range 1.56- 4.26) higher when compared with controls, respectively. p-JNK expression was on average 12-fold (range 2.20-19.92) and 2.90-fold (range 1.43-4.24) higher in ZSD and X-ALD patients than in controls. All patients had altered autophagic flux as concluded from the reduced LC3II/I ratio. CONCLUSIONS: In our study X-ALD and ZSD patients present an overactivation of MAPK pathways and an inhibition of autophagy. Considering the absence of successful therapies and the growing interest towards new therapies with antioxidants and autophagy inducers, the identification and validation of biomarkers to monitor optimal dosing and biological efficacy of the treatments is of prime interest.


Assuntos
Adrenoleucodistrofia , Síndrome de Zellweger , Humanos , Criança , Adolescente , Pré-Escolar , Adulto Jovem , Adulto , Adrenoleucodistrofia/genética , Síndrome de Zellweger/metabolismo , Leucócitos Mononucleares/metabolismo , Peroxissomos/metabolismo , Oxirredução
10.
bioRxiv ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38014142

RESUMO

Coenzyme Q (CoQ) is a redox lipid that fulfills critical functions in cellular bioenergetics and homeostasis. CoQ is synthesized by a multi-step pathway that involves several COQ proteins. Two steps of the eukaryotic pathway, the decarboxylation and hydroxylation of position C1, have remained uncharacterized. Here, we provide evidence that these two reactions occur in a single oxidative decarboxylation step catalyzed by COQ4. We demonstrate that COQ4 complements an Escherichia coli strain deficient for C1 decarboxylation and hydroxylation and that COQ4 displays oxidative decarboxylation activity in the non-CoQ producer Corynebacterium glutamicum. Overall, our results substantiate that COQ4 contributes to CoQ biosynthesis, not only via its previously proposed structural role, but also via oxidative decarboxylation of CoQ precursors. These findings fill a major gap in the knowledge of eukaryotic CoQ biosynthesis, and shed new light on the pathophysiology of human primary CoQ deficiency due to COQ4 mutations.

11.
Pediatr Neurol ; 148: 152-156, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37722301

RESUMO

Loss of function of the STRADA gene, an upstream mTOR inhibitor, causes a rare neurodevelopmental disorder characterized by polyhydramnios, megalencephaly, and symptomatic epilepsy (PMSE syndrome). Patients display a homogeneous phenotype including early-onset drug-resistant epilepsy, severe psychomotor delay, multisystemic comorbidities, and increased risk of premature death. The administration of sirolimus, an mTOR inhibitor, is helpful in controlling seizures in this syndrome. We report the electroclinical phenotype of two novel patients and the development of a yeast model to validate the pathogenicity of missense variants. Patient 1 harbored a missense STRADA variant and had a peculiar electroclinical phenotype with a relatively mild epilepsy course. Patient 2 harbored a truncating STRADA variant and showed a typical PMSE phenotype and a favorable response to early treatment with sirolimus. When we modeled the p.(Ser264Arg) STRADA change in its yeast homolog SPS1, it impaired SPS1 function. The results underlie the importance of a timely molecular diagnosis in these patients and show that yeast is a simple yet effective model to validate the pathogenicity of missense variants.

13.
Nat Commun ; 14(1): 5521, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684224

RESUMO

The second messenger cyclic AMP regulates many nuclear processes including transcription, pre-mRNA splicing and mitosis. While most functions are attributed to protein kinase A, accumulating evidence suggests that not all nuclear cyclic AMP-dependent effects are mediated by this kinase, implying that other effectors may be involved. Here we explore the nuclear roles of Exchange Protein Activated by cyclic AMP 1. We find that it enters the nucleus where forms reversible biomolecular condensates in response to cyclic AMP. This phenomenon depends on intrinsically disordered regions present at its amino-terminus and is independent of protein kinase A. Finally, we demonstrate that nuclear Exchange Protein Activated by cyclic AMP 1 condensates assemble at genomic loci on chromosome 6 in the proximity of Histone Locus Bodies and promote the transcription of a histone gene cluster. Collectively, our data reveal an unexpected mechanism through which cyclic AMP contributes to nuclear spatial compartmentalization and promotes the transcription of specific genes.


Assuntos
AMP Cíclico , Histonas , Histonas/genética , Núcleo Celular , Proteínas Nucleares , Proteínas Quinases Dependentes de AMP Cíclico
14.
Clin Genet ; 104(5): 604-606, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37356817

RESUMO

We report a newborn patient with trichothiodystrophy-3 (TTD3) caused by a novel homozygous variant in the GTF2H5 gene. His severe phenotype included congenital ichthyosis, complex posterior cranial fossa anomaly, life-threatening infections, bilateral cryptorchidism, and, notably, a complex cardiac malformation, which is unprecedented in TTD3 patients.


Assuntos
Síndromes de Tricotiodistrofia , Humanos , Recém-Nascido , Masculino , Homozigoto , Fenótipo , Fatores de Transcrição/genética , Síndromes de Tricotiodistrofia/genética
17.
Am J Med Genet A ; 191(7): 1917-1922, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37009750

RESUMO

Gaucher disease is the most common of the lysosomal storage diseases. It presents a wide phenotypic continuum, in which one may identify the classically described phenotypes, including type 1 form with visceral involvement, type 2 acute neuropathic early-infantile form, and type 3 subacute neuronopathic form. At the most severe end there is the perinatal form with onset in utero or during the neonatal period. The very few reported cases of neonatal onset Gaucher disease presented high and early mortality, due to neurological or visceral involvement, including liver failure. We report our experience treating a patient with the neonatal form of Gaucher disease who presented at birth with thrombocytopenia, hepatosplenomegaly and cholestasis. Despite early enzyme replacement therapy, liver disease was progressive. Liver biopsy showed hepatocellular giant-cell transformation, a nonspecific finding consistent with inflammation. The lack of response to enzyme replacement therapy and the microscopic findings suggested that mechanisms apart from substrate accumulation and Gaucher cells may play a role in the hepatic pathogenesis in Gaucher disease. An attempt to use corticosteroids at the age of 3 months resulted in a dramatic improvement in liver function and resulted in long-term survival. The patient is alive and 2 years old at this writing. Our case suggests that inflammatory processes may be important in the early pathogenesis of Gaucher disease and that early use of corticosteroids may open the way to a new therapeutic approach.


Assuntos
Doença de Gaucher , Gravidez , Feminino , Humanos , Doença de Gaucher/complicações , Doença de Gaucher/diagnóstico , Doença de Gaucher/tratamento farmacológico , Glucosilceramidase/genética , Seguimentos , Hepatomegalia
18.
J Clin Med ; 12(6)2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36983365

RESUMO

Classic infantile Pompe disease is characterized by a severe phenotype with cardiomyopathy and hypotonia. Cardiomyopathy is generally hypertrophic and rapidly regresses after enzyme replacement therapy. In this report, for the first time, we describe a patient with infantile Pompe disease and hypertrophic cardiomyopathy that evolved into non-compaction myocardium after treatment. The male newborn had suffered since birth with hypertrophic cardiomyopathy and heart failure. He was treated with standard enzyme replacement therapy (ERT) (alglucosidase alfa) and several immunomodulation cycles due to the development of anti-ERT antibodies, without resolution of the hypertrophic cardiomyopathy. At the age of 2.5 years, he was treated with a new combination of ERT therapy (cipaglucosidase alfa) and a chaperone (miglustat) for compassionate use. After 1 year, the cardiac hypertrophy was resolved, but it evolved into non-compaction myocardium. Non-compaction cardiomyopathy is often considered to be a congenital, primitive cardiomyopathy, due to an arrest of compaction of the myocardium wall during the embryonal development. Several genetic causes have been identified. We first describe cardiac remodeling from hypertrophic cardiomyopathy to a non-compaction form in a patient with infantile Pompe disease treated with a new ERT. This has important implications both for the monitoring of Pompe disease patients and for the understanding of the pathophysiological basis of non-compaction myocardium.

19.
Nat Commun ; 14(1): 602, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36746942

RESUMO

Polyglutamine expansion in the androgen receptor (AR) causes spinobulbar muscular atrophy (SBMA). Skeletal muscle is a primary site of toxicity; however, the current understanding of the early pathological processes that occur and how they unfold during disease progression remains limited. Using transgenic and knock-in mice and patient-derived muscle biopsies, we show that SBMA mice in the presymptomatic stage develop a respiratory defect matching defective expression of genes involved in excitation-contraction coupling (ECC), altered contraction dynamics, and increased fatigue. These processes are followed by stimulus-dependent accumulation of calcium into mitochondria and structural disorganization of the muscle triads. Deregulation of expression of ECC genes is concomitant with sexual maturity and androgen raise in the serum. Consistent with the androgen-dependent nature of these alterations, surgical castration and AR silencing alleviate the early and late pathological processes. These observations show that ECC deregulation and defective mitochondrial respiration are early but reversible events followed by altered muscle force, calcium dyshomeostasis, and dismantling of triad structure.


Assuntos
Androgênios , Atrofia Bulboespinal Ligada ao X , Camundongos , Animais , Androgênios/metabolismo , Atrofia Bulboespinal Ligada ao X/genética , Cálcio/metabolismo , Músculo Esquelético/metabolismo , Receptores Androgênicos/metabolismo , Mitocôndrias/metabolismo , Respiração , Modelos Animais de Doenças
20.
Eur J Hum Genet ; 31(5): 596-601, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36599937

RESUMO

Pathogenic variants in TGFBR1 are a common cause of Loeys-Dietz syndrome (LDS) characterized by life-threatening aortic and arterial disease. Generally, these are missense changes in highly conserved amino acids in the serine-threonine kinase domain. Conversely, nonsense, frameshift, or specific missense changes in the ligand-binding extracellular domain cause multiple self-healing squamous epithelioma (MSSE) lacking the cardiovascular phenotype. Here, we report on two novel variants in the penultimate exon 8 of TGFBR1 were identified in 3 patients from two unrelated LDS families: both were predicted to cause frameshift and premature stop codons (Gln448Profs*15 and Cys446Asnfs*4) resulting in truncated TGFBR1 proteins lacking the last 43 and 56 amino acid residues, respectively. These were classified as variants of uncertain significance based on current criteria. Transcript expression analyses revealed both mutant alleles escaped nonsense-mediated mRNA decay. Functional characterization in patient's dermal fibroblasts showed paradoxically enhanced TGFß signaling, as observed for pathogenic missense TGFBR1 changes causative of LDS. In summary, we expanded the allelic repertoire of LDS-associated TGFBR1 variants to include truncating variants escaping nonsense-mediated mRNA decay. Our data highlight the importance of functional studies in variants interpretation for correct clinical diagnosis.


Assuntos
Síndrome de Loeys-Dietz , Humanos , Éxons , Síndrome de Loeys-Dietz/genética , Síndrome de Loeys-Dietz/patologia , Degradação do RNAm Mediada por Códon sem Sentido , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...