Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Circ Res ; 134(1): 33-45, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38095088

RESUMO

BACKGROUND: A healthy heart is able to modify its function and increase relaxation through post-translational modifications of myofilament proteins. While there are known examples of serine/threonine kinases directly phosphorylating myofilament proteins to modify heart function, the roles of tyrosine (Y) phosphorylation to directly modify heart function have not been demonstrated. The myofilament protein TnI (troponin I) is the inhibitory subunit of the troponin complex and is a key regulator of cardiac contraction and relaxation. We previously demonstrated that TnI-Y26 phosphorylation decreases calcium-sensitive force development and accelerates calcium dissociation, suggesting a novel role for tyrosine kinase-mediated TnI-Y26 phosphorylation to regulate cardiac relaxation. Therefore, we hypothesize that increasing TnI-Y26 phosphorylation will increase cardiac relaxation in vivo and be beneficial during pathological diastolic dysfunction. METHODS: The signaling pathway involved in TnI-Y26 phosphorylation was predicted in silico and validated by tyrosine kinase activation and inhibition in primary adult murine cardiomyocytes. To investigate how TnI-Y26 phosphorylation affects cardiac muscle, structure, and function in vivo, we developed a novel TnI-Y26 phosphorylation-mimetic mouse that was subjected to echocardiography, pressure-volume loop hemodynamics, and myofibril mechanical studies. TnI-Y26 phosphorylation-mimetic mice were further subjected to the nephrectomy/DOCA (deoxycorticosterone acetate) model of diastolic dysfunction to investigate the effects of increased TnI-Y26 phosphorylation in disease. RESULTS: Src tyrosine kinase is sufficient to phosphorylate TnI-Y26 in cardiomyocytes. TnI-Y26 phosphorylation accelerates in vivo relaxation without detrimental structural or systolic impairment. In a mouse model of diastolic dysfunction, TnI-Y26 phosphorylation is beneficial and protects against the development of disease. CONCLUSIONS: We have demonstrated that tyrosine kinase phosphorylation of TnI is a novel mechanism to directly and beneficially accelerate myocardial relaxation in vivo.


Assuntos
Cálcio , Troponina I , Camundongos , Animais , Fosforilação , Troponina I/genética , Cálcio/metabolismo , Processamento de Proteína Pós-Traducional , Contração Miocárdica/fisiologia , Miofibrilas/metabolismo , Proteínas Tirosina Quinases , Tirosina/metabolismo , Tirosina/farmacologia
2.
J Vis Exp ; (189)2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36440883

RESUMO

The need for reproducible yet technically simple methods yielding high-quality cardiomyocytes is essential for research in cardiac biology. Cellular and molecular functional experiments (e.g., contraction, electrophysiology, calcium cycling, etc.) on cardiomyocytes are the gold standard for establishing mechanism(s) of disease. The mouse is the species of choice for functional experiments and the described technique is specifically for the isolation of mouse cardiomyocytes. Previous methods requiring a Langendorff apparatus require high levels of training and precision for aortic cannulation, often resulting in ischemia. The field is shifting toward Langendorff-free isolation methods that are simple, are reproducible, and yield viable myocytes for physiological data acquisition and culture. These methods greatly diminish ischemia time compared to aortic cannulation and result in reliably obtained cardiomyocytes. Our adaptation to the Langendorff-free method includes an initial perfusion with ice-cold clearing solution, use of a stabilizing platform that ensures a steady needle during perfusion, and additional digestion steps to ensure reliably obtained cardiomyocytes for use in functional measurements and culture. This method is simple and quick to perform and requires little technical skill.


Assuntos
Eletrofisiologia Cardíaca , Miócitos Cardíacos , Camundongos , Animais , Cálcio , Perfusão , Aclimatação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...