Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 136(9): 187, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37572171

RESUMO

KEY MESSAGE: Modifications of multiple copies of the BnaSAD2 gene family with genomic editing technology result in higher stearic acid content in the seed of polyploidy rapeseed. Solid fats from vegetable oils are widely used in food processing industry. Accumulating data showed that stearic acid is more favorite as the major composite among the saturate fatty acids in solid fats in considerations of its effects on human health. Rapeseed is the third largest oil crop worldwide, and has potential to be manipulated to produce higher saturated fatty acids as raw materials of solid fats. Toward that end, we identified four SAD2 gene family members in B. napus genome and established spatiotemporal expression pattern of the BnaSAD2 members. Genomic editing technology was applied to mutate all the copies of BnaSAD2 in this allopolyploid species and mutants at multiple alleles were generated and characterized to understand the effect of each BnaSAD2 member on blocking desaturation of stearic acid. Mutations occurred at BnaSAD2.A3 resulted in more dramatic changes of fatty acid profile than ones on BnaSAD2.C3, BnaSAD2.A5 and BnaSAD2.C4. The content of stearic acid in mutant seeds with single locus increased dramatically with a range of 3.1-8.2%. Furthermore, combination of different mutated alleles of BnaSAD2 resulted in more dramatic changes in fatty acid profiles and the double mutant at BnaSAD2.A3 and BnaSAD2.C3 showed the most dramatic phenotypic changes compared with its single mutants and other double mutants, leading to 11.1% of stearic acid in the seeds. Our results demonstrated that the members of BnaSAD2 have differentiated in their efficacy as a Δ9-Stearoyl-ACP-Desaturase and provided valuable rapeseed germplasm for breeding high stearic rapeseed oil.


Assuntos
Brassica napus , Brassica rapa , Humanos , Brassica napus/genética , Brassica napus/metabolismo , Edição de Genes , Melhoramento Vegetal , Ácidos Graxos/metabolismo , Ácidos Esteáricos/metabolismo , Óleos de Plantas , Brassica rapa/genética , Sementes/genética , Sementes/metabolismo
2.
Front Plant Sci ; 11: 776, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655594

RESUMO

Sclerotinia stem rot is a major disease in Brassica napus that causes yield losses of 10-20% and reaching 80% in severely infected fields. SSR not only causes yield reduction but also causes low oil quality by reducing fatty acid content. There is a need to identify resistant genetic sources with functional significance for the breeding of SSR-resistant cultivars. In this study, we identified 17 QTLs involved in SSR resistance in three different seasons using SNP markers and disease lesion development after artificial inoculation. There were no common QTLs in all 3 years, but there were three QTLs that appeared in two seasons covering all seasons with a shared QTL. The QTLs identified in the 2 years were SRA9a, SRC2a and SRC3a with phenotypic effect variances of 14.75 and 11.57% for SRA9a, 7.49 and 10.38% for SRC3a and 7.73 and 6.81% for SRC2a in their 2 years, respectively. The flowering time was also found to have a negative correlation with disease resistance, i.e., early-maturing lines were more susceptible to disease. The stem width has shown a notably weak effect on disease development, causing researchers to ignore its effect. Given that flowering time is an important factor in disease resistance, we used comparative RNA-sequencing analysis of resistant and susceptible lines with consistent performance in 3 years with almost the same flowering time to identify the resistance genes directly involved in resistance within the QTL regions. Overall, there were more genes differentially expressed in resistant lines 19,970 than in susceptible lines 3936 compared to their mock-inoculated lines, demonstrating their tendency to cope with disease. We identified 36 putative candidate genes from the resistant lines that were upregulated in resistant lines compared to resistant mock and susceptible lines that might be involved in resistance to SSR.

3.
Sci Rep ; 8(1): 3636, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29483532

RESUMO

Lignin content and composition are crucial factors affecting biomass digestibility. Exploring the genetic loci simultaneously affecting lignin-relevant traits and biomass digestibility is a precondition for lignin genetic manipulation towards energy crop breeding. In this study, a high-throughput platform was employed to assay the lignin content, lignin composition and biomass enzymatic digestibility of a rice recombinant inbred line population. Correlation analysis indicated that the absolute content of lignin monomers rather than lignin content had negative effects on biomass saccharification, whereas the relative content of p-hydroxyphenyl unit and the molar ratio of p-hydroxyphenyl unit to guaiacyl unit exhibited positive roles. Eight QTL clusters were identified and four of them affecting both lignin composition and biomass digestibility. The additive effects of clustered QTL revealed consistent relationships between lignin-relevant traits and biomass digestibility. Pyramiding rice lines containing the above four positive alleles for increasing biomass digestibility were selected and showed comparable lignin content, decreased syringyl or guaiacyl unit and increased molar percentage of p-hydroxyphenyl unit, the molar ratio of p-hydroxyphenyl unit to guaiacyl unit and sugar releases. More importantly, the lodging resistance and eating/cooking quality of pyramiding lines were not sacrificed, indicating the QTL information could be applied to select desirable energy rice lines.


Assuntos
Lignina/metabolismo , Oryza/genética , Oryza/metabolismo , Biomassa , Loci Gênicos/genética , Locos de Características Quantitativas/genética
4.
Environ Sci Pollut Res Int ; 23(12): 11864-75, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26957429

RESUMO

An investigation was carried out to examine the combined and individual effects of cadmium (Cd) and arsenic (As) stress on osmolyte accumulation, antioxidant activities, and reactive oxygen species (ROS) production at different growth stages (45, 60, 75, 90 days after sowing (DAS)) of two maize cultivars viz., Dong Dan 80 and Run Nong 35. The Cd (100 µM) and As (200 µM) were applied separately as well as in combination (Cd + As) at 30 DAS. Results revealed pronounced variations in the behavior of antioxidants, osmolytes, and ROS in both maize cultivars under the influence of Cd and As stress. Activities of enzymatic (SOD, POD, CAT and APX, GPX, GR) and non-enzymatic (GSH and AsA) antioxidants, generation of ROS, and accumulation of osmolytes were enhanced with the passage of time; therefore, the maximum values for these attributes were observed at 90 DAS for both cultivars. Exposure of plants to Cd or As stress considerably enhanced the antioxidant activities, ROS, and osmolyte accumulation compared with control, while combined application of Cd + As was more devastating in reducing plant biomass of both maize cultivars. Among cultivars, Dong Dan 80 was better able to negate the heavy metal-induced oxidative damage, which was associated with higher antioxidant activities, greater osmolytes accumulation, and lower ROS production in this cultivar.


Assuntos
Antioxidantes/metabolismo , Arsênio/farmacologia , Cádmio/farmacologia , Osmorregulação/efeitos dos fármacos , Poluentes do Solo/farmacologia , Zea mays/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Estresse Fisiológico , Zea mays/efeitos dos fármacos
5.
Environ Sci Pollut Res Int ; 22(21): 17022-30, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26122572

RESUMO

Increased cadmium (Cd) accumulation in soils has led to tremendous environmental problems, with pronounced effects on agricultural productivity. Present study investigated the effects of Cd stress imposed at various concentrations (0, 75, 150, 225, 300, 375 µM) on antioxidant activities, reactive oxygen species (ROS), Cd accumulation, and productivity of two maize (Zea mays L.) cultivars viz., Run Nong 35 and Wan Dan 13. Considerable variations in Cd accumulation and in behavior of antioxidants and ROS were observed under Cd stress in both maize cultivars, and such variations governed by Cd were concentration dependent. Exposure of plant to Cd stress considerably increased Cd concentration in all plant parts particularly in roots. Wan Dan 13 accumulated relatively higher Cd in root, stem, and leaves than Run Nong 35; however, in seeds, Run Nong 35 recorded higher Cd accumulation. All the Cd toxicity levels starting from 75 µM enhanced H2O2 and MDA concentrations and triggered electrolyte leakage in leaves of both cultivars, and such an increment was more in Run Nong 35. The ROS were scavenged by the enhanced activities of superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, and glutathione peroxidase in response to Cd stress, and these antioxidant activities were higher in Wan Dan 13 compared with Run Nong 35 at all Cd toxicity levels. The grain yield of maize was considerably reduced particularly for Run Nong 35 under different Cd toxicity levels as compared with control. The Wan Dan 13 was better able to alleviate Cd-induced oxidative damage which was attributed to more Cd accumulation in roots and higher antioxidant activities in this cultivar, suggesting that manipulation of these antioxidants and enhancing Cd accumulation in roots may lead to improvement in Cd stress tolerance.


Assuntos
Antioxidantes , Cádmio , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio , Zea mays , Antioxidantes/análise , Antioxidantes/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Oxirredutases/análise , Oxirredutases/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Sementes/efeitos dos fármacos , Sementes/metabolismo , Zea mays/química , Zea mays/efeitos dos fármacos , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...