Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Physiol Paris ; 110(3 Pt B): 233-244, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27864094

RESUMO

Electrical activity is an important regulator of cellular function and gene expression in electrically excitable cell types. In the weakly electric teleost fish Sternopygus macrurus, electrocytes, i.e., the current-producing cells of the electric organ, derive from a striated muscle lineage. Mature electrocytes are larger than muscle fibers, do not contain sarcomeres, and are driven continuously at frequencies higher than those exerted on muscle cells. Previous work showed that the removal of electrical activity by spinal cord transection (ST) for two and five weeks led to an upregulation of some sarcomeric proteins and a decrease in electrocyte size. To test whether changes in gene transcription preceded these phenotypic changes, we determined the sensitivity of electrocyte gene expression to electrical inactivity periods of two and five days after ST. Whole tissue gene expression profiles using deep RNA sequencing showed minimal alterations in the levels of myogenic transcription factor and sarcomeric transcripts after either ST period. Moreover, while analysis of differentially expressed genes showed a transient upregulation of genes associated with proteolytic mechanisms at two days and an increase in mRNA levels of cytoskeletal genes at five days after electrical silencing, electrocyte size was not affected. Electrical inactivity also resulted in the downregulation of genes that were classified into enriched clusters associated with functions of axon migration and synapse structure. Overall, these data demonstrate that unlike tissues in the myogenic lineage in other vertebrate species, regulation of gene transcription and cell size in the muscle-like electrocytes of S. macrurus is highly insensitive to short-term electrical inactivity. Moreover, together with data obtained from control and long-term ST studies, the present data suggest that neural input might influence post-transcriptional processes to affect the mature electrocyte phenotype.


Assuntos
Órgão Elétrico/fisiologia , Gimnotiformes/fisiologia , Transcriptoma , Animais , Tamanho Celular , Órgão Elétrico/citologia , Gimnotiformes/genética
2.
Physiol Genomics ; 48(9): 699-710, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27449658

RESUMO

Skeletal muscle is distinguished from other tissues on the basis of its shape, biochemistry, and physiological function. Based on mammalian studies, fiber size, fiber types, and gene expression profiles are regulated, in part, by the electrical activity exerted by the nervous system. To address whether similar adaptations to changes in electrical activity in skeletal muscle occur in teleosts, we studied these phenotypic properties of ventral muscle in the electric fish Sternopygus macrurus following 2 and 5 days of electrical inactivation by spinal transection. Our data show that morphological and biochemical properties of skeletal muscle remained largely unchanged after these treatments. Specifically, the distribution of type I and type II muscle fibers and the cross-sectional areas of these fiber types observed in control fish remained unaltered after each spinal transection survival period. This response to electrical inactivation was generally reflected at the transcript level in real-time PCR and RNA-seq data by showing little effect on the transcript levels of genes associated with muscle fiber type differentiation and plasticity, the sarcomere complex, and pathways implicated in the regulation of muscle fiber size. Data from this first study characterizing the acute influence of neural activity on muscle mass and sarcomere gene expression in a teleost are discussed in the context of comparative studies in mammalian model systems and vertebrate species from different lineages.


Assuntos
Fibras Musculares Esqueléticas/fisiologia , Animais , Diferenciação Celular/fisiologia , Peixes , Transcriptoma/fisiologia
3.
PLoS One ; 11(6): e0156415, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27270924

RESUMO

We critically re-examine Fredrickson et al.'s renewed claims concerning the differential relationship between hedonic and eudaimonic forms of well-being and gene expression, namely that people who experience a preponderance of eudaimonic well-being have gene expression profiles that are associated with more favorable health outcomes. By means of an extensive reanalysis of their data, we identify several discrepancies between what these authors claimed and what their data support; we further show that their different analysis models produce mutually contradictory results. We then show how Fredrickson et al.'s most recent article on this topic not only fails to adequately address our previously published concerns about their earlier related work, but also introduces significant further problems, including inconsistency in their hypotheses. Additionally, we demonstrate that regardless of which statistical model is used to analyze their data, Fredrickson et al.'s method can be highly sensitive to the inclusion (or exclusion) of data from a single subject. We reiterate our previous conclusions, namely that there is no evidence that Fredrickson et al. have established a reliable empirical distinction between their two delineated forms of well-being, nor that eudaimonic well-being provides any overall health benefits over hedonic well-being.


Assuntos
Regulação da Expressão Gênica , Genômica/métodos , Humanos
4.
PeerJ ; 4: e1828, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27114860

RESUMO

In most electric fish species, the electric organ (EO) derives from striated muscle cells that suppress many muscle properties. In the gymnotiform Sternopygus macrurus, mature electrocytes, the current-producing cells of the EO, do not contain sarcomeres, yet they continue to make some cytoskeletal and sarcomeric proteins and the muscle transcription factors (MTFs) that induce their expression. In order to more comprehensively examine the transcriptional regulation of genes associated with the formation and maintenance of the contractile sarcomere complex, results from expression analysis using qRT-PCR were informed by deep RNA sequencing of transcriptomes and miRNA compositions of muscle and EO tissues from adult S. macrurus. Our data show that: (1) components associated with the homeostasis of the sarcomere and sarcomere-sarcolemma linkage were transcribed in EO at levels similar to those in muscle; (2) MTF families associated with activation of the skeletal muscle program were not differentially expressed between these tissues; and (3) a set of microRNAs that are implicated in regulation of the muscle phenotype are enriched in EO. These data support the development of a unique and highly specialized non-contractile electrogenic cell that emerges from a striated phenotype and further differentiates with little modification in its transcript composition. This comprehensive analysis of parallel mRNA and miRNA profiles is not only a foundation for functional studies aimed at identifying mechanisms underlying the transcription-independent myogenic program in S. macrurus EO, but also has important implications to many vertebrate cell types that independently activate or suppress specific features of the skeletal muscle program.

5.
Biomolecules ; 6(2)2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27104580

RESUMO

RNase P, a ribozyme-based ribonucleoprotein (RNP) complex that catalyzes tRNA 5'-maturation, is ubiquitous in all domains of life, but the evolution of its protein components (RNase P proteins, RPPs) is not well understood. Archaeal RPPs may provide clues on how the complex evolved from an ancient ribozyme to an RNP with multiple archaeal and eukaryotic (homologous) RPPs, which are unrelated to the single bacterial RPP. Here, we analyzed the sequence and structure of archaeal RPPs from over 600 available genomes. All five RPPs are found in eight archaeal phyla, suggesting that these RPPs arose early in archaeal evolutionary history. The putative ancestral genomic loci of archaeal RPPs include genes encoding several members of ribosome, exosome, and proteasome complexes, which may indicate coevolution/coordinate regulation of RNase P with other core cellular machineries. Despite being ancient, RPPs generally lack sequence conservation compared to other universal proteins. By analyzing the relative frequency of residues at every position in the context of the high-resolution structures of each of the RPPs (either alone or as functional binary complexes), we suggest residues for mutational analysis that may help uncover structure-function relationships in RPPs.


Assuntos
Archaea/metabolismo , Proteínas Arqueais/metabolismo , Ribonuclease P/metabolismo , Proteínas Arqueais/química , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Ribonuclease P/química
6.
PLoS One ; 10(11): e0142814, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26560106

RESUMO

Acoustic communication is essential for the reproductive success of the plainfin midshipman fish (Porichthys notatus). During the breeding season, type I males use acoustic cues to advertise nest location to potential mates, creating an audible signal that attracts reproductive females. Type II (sneaker) males also likely use this social acoustic signal to find breeding pairs from which to steal fertilizations. Estrogen-induced changes in the auditory system of breeding females are thought to enhance neural encoding of the advertisement call, and recent anatomical data suggest the saccule (the main auditory end organ) as one possible target for this seasonal modulation. Here we describe saccular transcriptomes from all three sexual phenotypes (females, type I and II males) collected during the breeding season as a first step in understanding the mechanisms underlying sexual phenotype-specific and seasonal differences in auditory function. We used RNA-Seq on the Ion Torrent platform to create a combined transcriptome dataset containing over 79,000 assembled transcripts representing almost 9,000 unique annotated genes. These identified genes include several with known inner ear function and multiple steroid hormone receptors. Transcripts most closely matched to published genomes of nile tilapia and large yellow croaker, inconsistent with the phylogenetic relationship between these species but consistent with the importance of acoustic communication in their life-history strategies. We then compared the RNA-Seq results from the saccules of reproductive females with a separate transcriptome from the non-reproductive female phenotype and found over 700 differentially expressed transcripts, including members of the Wnt and Notch signaling pathways that mediate cell proliferation and hair cell addition in the inner ear. These data constitute a valuable resource for furthering our understanding of the molecular basis for peripheral auditory function as well as a range of future midshipman and cross-species comparative studies of the auditory periphery.


Assuntos
Batracoidiformes/fisiologia , Sáculo e Utrículo/fisiologia , Comportamento Sexual Animal , Transcriptoma , Estimulação Acústica , Acústica , Comunicação Animal , Animais , Percepção Auditiva/fisiologia , Proliferação de Células , Surdez/genética , Orelha Interna/fisiologia , Feminino , Perfilação da Expressão Gênica , Audição/fisiologia , Masculino , Fenótipo , Filogenia , Receptores Notch/metabolismo , Receptores de Esteroides/genética , Reprodução/fisiologia , Análise de Sequência de RNA , Vocalização Animal/fisiologia , Washington , Proteínas Wnt/metabolismo
7.
G3 (Bethesda) ; 5(10): 2007-19, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26248981

RESUMO

The Pacific oyster Crassostrea gigas, a widely cultivated marine bivalve mollusc, is becoming a genetically and genomically enabled model for highly fecund marine metazoans with complex life-histories. A genome sequence is available for the Pacific oyster, as are first-generation, low-density, linkage and gene-centromere maps mostly constructed from microsatellite DNA makers. Here, higher density, second-generation, linkage maps are constructed from more than 1100 coding (exonic) single-nucleotide polymorphisms (SNPs), as well as 66 previously mapped microsatellite DNA markers, all typed in five families of Pacific oysters (nearly 172,000 genotypes). The map comprises 10 linkage groups, as expected, has an average total length of 588 cM, an average marker-spacing of 1.0 cM, and covers 86% of a genome estimated to be 616 cM. All but seven of the mapped SNPs map to 618 genome scaffolds; 260 scaffolds contain two or more mapped SNPs, but for 100 of these scaffolds (38.5%), the contained SNPs map to different linkage groups, suggesting widespread errors in scaffold assemblies. The 100 misassembled scaffolds are significantly longer than those that map to a single linkage group. On the genetic maps, marker orders and intermarker distances vary across families and mapping methods, owing to an abundance of markers segregating from only one parent, to widespread distortions of segregation ratios caused by early mortality, as previously observed for oysters, and to genotyping errors. Maps made from framework markers provide stronger support for marker orders and reasonable map lengths and are used to produce a consensus high-density linkage map containing 656 markers.


Assuntos
Mapeamento Cromossômico , Crassostrea/genética , Ligação Genética , Genômica , Animais , Feminino , Marcadores Genéticos , Genômica/métodos , Masculino , Polimorfismo de Nucleotídeo Único , Recombinação Genética
8.
BMC Genomics ; 16: 243, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25887781

RESUMO

BACKGROUND: With its unique ability to produce high-voltage electric discharges in excess of 600 volts, the South American strong voltage electric eel (Electrophorus electricus) has played an important role in the history of science. Remarkably little is understood about the molecular nature of its electric organs. RESULTS: We present an in-depth analysis of the genome of E. electricus, including the transcriptomes of eight mature tissues: brain, spinal cord, kidney, heart, skeletal muscle, Sachs' electric organ, main electric organ, and Hunter's electric organ. A gene set enrichment analysis based on gene ontology reveals enriched functions in all three electric organs related to transmembrane transport, androgen binding, and signaling. This study also represents the first analysis of miRNA in electric fish. It identified a number of miRNAs displaying electric organ-specific expression patterns, including one novel miRNA highly over-expressed in all three electric organs of E. electricus. All three electric organ tissues also express three conserved miRNAs that have been reported to inhibit muscle development in mammals, suggesting that miRNA-dependent regulation of gene expression might play an important role in specifying an electric organ identity from its muscle precursor. These miRNA data were supported using another complete miRNA profile from muscle and electric organ tissues of a second gymnotiform species. CONCLUSIONS: Our work on the E. electricus genome and eight tissue-specific gene expression profiles will greatly facilitate future research on determining the coding and regulatory sequences that specify the function, development, and evolution of electric organs. Moreover, these data and future studies will be informed by the first comprehensive analysis of miRNA expression in an electric fish presented here.


Assuntos
Órgão Elétrico/metabolismo , Electrophorus/metabolismo , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Transcriptoma , Animais , Electrophorus/genética , MicroRNAs/genética , América do Sul
9.
Science ; 344(6191): 1522-5, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24970089

RESUMO

Little is known about the genetic basis of convergent traits that originate repeatedly over broad taxonomic scales. The myogenic electric organ has evolved six times in fishes to produce electric fields used in communication, navigation, predation, or defense. We have examined the genomic basis of the convergent anatomical and physiological origins of these organs by assembling the genome of the electric eel (Electrophorus electricus) and sequencing electric organ and skeletal muscle transcriptomes from three lineages that have independently evolved electric organs. Our results indicate that, despite millions of years of evolution and large differences in the morphology of electric organ cells, independent lineages have leveraged similar transcription factors and developmental and cellular pathways in the evolution of electric organs.


Assuntos
Evolução Biológica , Peixe Elétrico/genética , Órgão Elétrico/citologia , Órgão Elétrico/fisiologia , Electrophorus/anatomia & histologia , Electrophorus/genética , Animais , Peixes-Gato/anatomia & histologia , Peixes-Gato/genética , Peixes-Gato/fisiologia , Diferenciação Celular , Peixe Elétrico/anatomia & histologia , Peixe Elétrico/fisiologia , Órgão Elétrico/anatomia & histologia , Electrophorus/fisiologia , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Filogenia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
10.
PLoS Genet ; 5(4): e1000457, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19381263

RESUMO

Antisense transcription is a pervasive phenomenon, but its source and functional significance is largely unknown. We took an expression-based approach to explore microRNA (miRNA)-related antisense transcription by computational analyses of published whole-genome tiling microarray transcriptome and deep sequencing small RNA (smRNA) data. Statistical support for greater abundance of antisense transcription signatures and smRNAs was observed for miRNA targets than for paralogous genes with no miRNA cleavage site. Antisense smRNAs were also found associated with MIRNA genes. This suggests that miRNA-associated "transitivity" (production of small interfering RNAs through antisense transcription) is more common than previously reported. High-resolution (3 nt) custom tiling microarray transcriptome analysis was performed with probes 400 bp 5' upstream and 3' downstream of the miRNA cleavage sites (direction relative to the mRNA) for 22 select miRNA target genes. We hybridized RNAs labeled from the smRNA pathway mutants, including hen1-1, dcl1-7, hyl1-2, rdr6-15, and sgs3-14. Results showed that antisense transcripts associated with miRNA targets were mainly elevated in hen1-1 and sgs3-14 to a lesser extent, and somewhat reduced in dcl11-7, hyl11-2, or rdr6-15 mutants. This was corroborated by semi-quantitative reverse transcription PCR; however, a direct correlation of antisense transcript abundance in MIR164 gene knockouts was not observed. Our overall analysis reveals a more widespread role for miRNA-associated transitivity with implications for functions of antisense transcription in gene regulation. HEN1 and SGS3 may be links for miRNA target entry into different RNA processing pathways.


Assuntos
Arabidopsis/genética , MicroRNAs/genética , RNA Antissenso/genética , RNA Mensageiro/genética , Transcrição Gênica , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas
11.
FEBS Lett ; 581(18): 3363-70, 2007 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-17604026

RESUMO

This study identified the widely used T7 in vitro transcription system as a major source of artifact in the tiling array data from nine eukaryotic genomes. The most affected probes contained a sequence motif complementary to the +1 to +9 initial transcribed sequence (ITS) of the T7-(dT)(24) primer. The abundance of 5' ITS cRNA fragments produced during target preparation was sufficient to drive undesirable hybridization. A new T7-(dT)(24) primer with a modified ITS was designed that shifts the artifactual motifs as predicted and reduces the effect of the artifact. A computational algorithm was generated to filter out the likely artifactual probes from existing whole-genome tiling array data and improve probe selection. Further studies of Arabidopsis thaliana were conducted using both T7-(dT)(24) primers. While the artifact affected transcript discovery with tiling arrays, it showed only a minor impact on measurements of gene expression using commercially available 'gene-only' expression arrays.


Assuntos
Artefatos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Transcrição Gênica/genética , Sequência de Bases , Nucleotídeos/genética
12.
Genome Biol ; 8(6): R97, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17543122

RESUMO

BACKGROUND: Non-coding microRNAs (miRNAs) are key regulators of gene expression in eukaryotes. Insect miRNAs help regulate the levels of proteins involved with development, metabolism, and other life history traits. The recently sequenced honey bee genome provides an opportunity to detect novel miRNAs in both this species and others, and to begin to infer the roles of miRNAs in honey bee development. RESULTS: Three independent computational surveys of the assembled honey bee genome identified a total of 65 non-redundant candidate miRNAs, several of which appear to have previously unrecognized orthologs in the Drosophila genome. A subset of these candidate miRNAs were screened for expression by quantitative RT-PCR and/or genome tiling arrays and most predicted miRNAs were confirmed as being expressed in at least one honey bee tissue. Interestingly, the transcript abundance for several known and novel miRNAs displayed caste or age-related differences in honey bees. Genes in proximity to miRNAs in the bee genome are disproportionately associated with the Gene Ontology terms 'physiological process', 'nucleus' and 'response to stress'. CONCLUSION: Computational approaches successfully identified miRNAs in the honey bee and indicated previously unrecognized miRNAs in the well-studied Drosophila melanogaster genome despite the 280 million year distance between these insects. Differentially transcribed miRNAs are likely to be involved in regulating honey bee development, and arguably in the extreme developmental switch between sterile worker bees and highly fertile queens.


Assuntos
Abelhas/genética , Genoma de Inseto , MicroRNAs/genética , Animais , Drosophila melanogaster/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Íntrons , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica
13.
Science ; 314(5801): 960-2, 2006 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-17095694

RESUMO

The sea urchin Strongylocentrotus purpuratus is a model organism for study of the genomic control circuitry underlying embryonic development. We examined the complete repertoire of genes expressed in the S. purpuratus embryo, up to late gastrula stage, by means of high-resolution custom tiling arrays covering the whole genome. We detected complete spliced structures even for genes known to be expressed at low levels in only a few cells. At least 11,000 to 12,000 genes are used in embryogenesis. These include most of the genes encoding transcription factors and signaling proteins, as well as some classes of general cytoskeletal and metabolic proteins, but only a minor fraction of genes encoding immune functions and sensory receptors. Thousands of small asymmetric transcripts of unknown function were also detected in intergenic regions throughout the genome. The tiling array data were used to correct and authenticate several thousand gene models during the genome annotation process.


Assuntos
Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Strongylocentrotus purpuratus/embriologia , Strongylocentrotus purpuratus/genética , Transcrição Gênica , Animais , Blástula/metabolismo , Biologia Computacional , Gástrula/metabolismo , Perfilação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Técnicas de Sonda Molecular , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Transdução de Sinais/genética , Strongylocentrotus purpuratus/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...