Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 2602, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35545632

RESUMO

XX female and XY male therian mammals equalize X-linked gene expression through the mitotically-stable transcriptional inactivation of one of the two X chromosomes in female somatic cells. Here, we describe an essential function of the X-linked homolog of an ancestral X-Y gene pair, Kdm5c-Kdm5d, in the expression of Xist lncRNA, which is required for stable X-inactivation. Ablation of Kdm5c function in females results in a significant reduction in Xist RNA expression. Kdm5c encodes a demethylase that enhances Xist expression by converting histone H3K4me2/3 modifications into H3K4me1. Ectopic expression of mouse and human KDM5C, but not the Y-linked homolog KDM5D, induces Xist in male mouse embryonic stem cells (mESCs). Similarly, marsupial (opossum) Kdm5c but not Kdm5d also upregulates Xist in male mESCs, despite marsupials lacking Xist, suggesting that the KDM5C function that activates Xist in eutherians is strongly conserved and predates the divergence of eutherian and metatherian mammals. In support, prototherian (platypus) Kdm5c also induces Xist in male mESCs. Together, our data suggest that eutherian mammals co-opted the ancestral demethylase KDM5C during sex chromosome evolution to upregulate Xist for the female-specific induction of X-inactivation.


Assuntos
Marsupiais , Ornitorrinco , RNA Longo não Codificante , Animais , Feminino , Genes Ligados ao Cromossomo X , Histona Desmetilases , Masculino , Mamíferos/genética , Marsupiais/genética , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Cromossomo X/genética , Cromossomo X/metabolismo , Inativação do Cromossomo X/genética
2.
Gene Expr Patterns ; 27: 128-134, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29247850

RESUMO

Grass pea (Lathyrus sativus L.) is a worldwide popular pulse crop especially for its protein rich seeds with least production cost. However, the use of the crop became controversial due to the presence of non-protein amino acid, ß-N-oxalyl-L-α, ß-diaminopropionic acid (ß-ODAP) in its seed and leaf, which is known as the principle neurotoxin to cause neurolathyrism (a motor neurodegenerative disease of humans and animals) during prolonged consumption as regular diet. Till date, the knowledge on ß-ODAP biosynthesis in Lathyrus sp. is limited only to a small part of the complex bio-chemical steps involved including a few known sulfur-containing enzymes (viz. cysteine synthase, ODAP synthase etc.). In Lathyrus sativus, biosynthesis of ß-ODAP varies differentially in a tissue-specific manner as well as in response to several environmental stresses viz. zinc deficiency, iron over-exposure, moisture stress etc. In the present study, a novel cysteine synthase gene (LsCSase) from Lathyrus sativus L was identified and characterized through bioinformatics approaches. The bioinformatic analysis revealed that LsCSase showed maximum similarity with the O-acetyl serine (thiol) lyase of Medicago truncatula with respect to several significant sequence-specific conserved motifs (cysK, CBS like, ADH_zinc_N, PALP), sub-cellular localization (chloroplast or cytoplasm) etc., similar to other members of cysteine synthase protein family. Moreover, the tissue-specific regulation of the LsCSase as well as its transcriptional activation under certain previously reported stressed conditions (low Zn+2-high Fe+2, PEG induced osmotic stress) were also documented through quantitative real-time PCR analyses, suggesting a possible link between the LsCSase gene activation and ß-ODAP biosynthesis to manage external stresses in grass pea. This preliminary study offers a probable way towards the development of less toxic consumer-safe grass pea by down-regulation or deactivation of such gene/s (cysteine synthase) through genetic manipulations.


Assuntos
Cisteína Sintase/metabolismo , Regulação Enzimológica da Expressão Gênica , Lathyrus/enzimologia , Sementes/enzimologia , Sequência de Aminoácidos , Simulação por Computador , Cisteína Sintase/genética , Lathyrus/genética , Lathyrus/crescimento & desenvolvimento , Especificidade de Órgãos , Sementes/genética , Sementes/crescimento & desenvolvimento , Homologia de Sequência , Estresse Fisiológico
4.
BMC Plant Biol ; 16(1): 158, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27411911

RESUMO

BACKGROUND: Family members of sucrose non-fermenting 1-related kinase 2 (SnRK2), being plant-specific serine/threonine protein kinases, constitute the central core of abscisic acid (ABA)-dependent and ABA-independent signaling pathways, and are key regulators of abiotic stress adaptation in plants. We report here the functional characterization of SAPK9 gene, one of the 10 SnRK2s of rice, through developing gain-of-function and loss-of-function phenotypes by transgenesis. RESULTS: The gene expression profiling revealed that the abundance of single gene-derived SAPK9 transcript was significantly higher in drought-tolerant rice genotypes than the drought-sensitive ones, and its expression was comparatively greater in reproductive stage than the vegetative stage. The highest expression of SAPK9 gene in drought-tolerant Oryza rufipogon prompted us to clone and characterise the CDS of this allele in details. The SAPK9 transcript expression was found to be highest in leaf and upregulated during drought stress and ABA treatment. In silico homology modelling of SAPK9 with Arabidopsis OST1 protein showed the bilobal kinase fold structure of SAPK9, which upon bacterial expression was able to phosphorylate itself, histone III and OsbZIP23 as substrates in vitro. Transgenic overexpression (OE) of SAPK9 CDS from O. rufipogon in a drought-sensitive indica rice genotype exhibited significantly improved drought tolerance in comparison to transgenic silencing (RNAi) lines and non-transgenic (NT) plants. In contrast to RNAi and NT plants, the enhanced drought tolerance of OE lines was concurrently supported by the upgraded physiological indices with respect to water retention capacity, soluble sugar and proline content, stomatal closure, membrane stability, and cellular detoxification. Upregulated transcript expressions of six ABA-dependent stress-responsive genes and increased sensitivity to exogenous ABA of OE lines indicate that the SAPK9 is a positive regulator of ABA-mediated stress signaling pathways in rice. The yield-related traits of OE lines were augmented significantly, which resulted from the highest percentage of fertile pollens in OE lines when compared with RNAi and NT plants. CONCLUSION: The present study establishes the functional role of SAPK9 as transactivating kinase and potential transcriptional activator in drought stress adaptation of rice plant. The SAPK9 gene has potential usefulness in transgenic breeding for improving drought tolerance and grain yield in crop plants.


Assuntos
Oryza/enzimologia , Proteínas de Plantas/metabolismo , Estômatos de Plantas/metabolismo , Proteínas Quinases/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Osmose , Proteínas de Plantas/genética , Estômatos de Plantas/genética , Proteínas Quinases/genética , Sementes/enzimologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Sacarose/metabolismo
5.
Transgenic Res ; 25(5): 561-73, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27012546

RESUMO

To meet current challenges in agriculture, genome editing using sequence-specific nucleases (SSNs) is a powerful tool for basic and applied plant biology research. Here, we describe the principle and application of available genome editing tools, including zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeat associated CRISPR/Cas9 system. Among these SSNs, CRISPR/Cas9 is the most recently characterized and rapidly developing genome editing technology, and has been successfully utilized in a wide variety of organisms. This review specifically illustrates the power of CRISPR/Cas9 as a tool for plant genome engineering, and describes the strengths and weaknesses of the CRISPR/Cas9 technology compared to two well-established genome editing tools, ZFNs and TALENs.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Genoma de Planta/genética , Plantas Geneticamente Modificadas/genética , Marcação de Genes , Plantas/genética , Nucleases de Dedos de Zinco/genética
6.
PLoS One ; 11(3): e0150763, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26959651

RESUMO

Drought is one of the major limiting factors for productivity of crops including rice (Oryza sativa L.). Understanding the role of allelic variations of key regulatory genes involved in stress-tolerance is essential for developing an effective strategy to combat drought. The bZIP transcription factors play a crucial role in abiotic-stress adaptation in plants via abscisic acid (ABA) signaling pathway. The present study aimed to search for allelic polymorphism in the OsbZIP23 gene across selected drought-tolerant and drought-sensitive rice genotypes, and to characterize the new allele through overexpression (OE) and gene-silencing (RNAi). Analyses of the coding DNA sequence (CDS) of the cloned OsbZIP23 gene revealed single nucleotide polymorphism at four places and a 15-nucleotide deletion at one place. The single-copy OsbZIP23 gene is expressed at relatively higher level in leaf tissues of drought-tolerant genotypes, and its abundance is more in reproductive stage. Cloning and sequence analyses of the OsbZIP23-promoter from drought-tolerant O. rufipogon and drought-sensitive IR20 cultivar showed variation in the number of stress-responsive cis-elements and a 35-nucleotide deletion at 5'-UTR in IR20. Analysis of the GFP reporter gene function revealed that the promoter activity of O. rufipogon is comparatively higher than that of IR20. The overexpression of any of the two polymorphic forms (1083 bp and 1068 bp CDS) of OsbZIP23 improved drought tolerance and yield-related traits significantly by retaining higher content of cellular water, soluble sugar and proline; and exhibited decrease in membrane lipid peroxidation in comparison to RNAi lines and non-transgenic plants. The OE lines showed higher expression of target genes-OsRab16B, OsRab21 and OsLEA3-1 and increased ABA sensitivity; indicating that OsbZIP23 is a positive transcriptional-regulator of the ABA-signaling pathway. Taken together, the present study concludes that the enhanced gene expression rather than natural polymorphism in coding sequence of OsbZIP23 is accountable for improved drought tolerance and yield performance in rice genotypes.


Assuntos
Adaptação Fisiológica/genética , Secas , Regulação da Expressão Gênica de Plantas , Fases de Leitura Aberta/genética , Oryza/genética , Proteínas de Plantas/genética , Polimorfismo Genético , Ácido Abscísico/farmacologia , Alelos , Sequência de Bases , Clonagem Molecular , Dosagem de Genes , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Genes de Plantas , Genes Reporter , Genótipo , Germinação/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Dados de Sequência Molecular , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Água
7.
World J Microbiol Biotechnol ; 32(4): 62, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26925624

RESUMO

Emergence of resistant insects limits the sustainability of Bacillus thuringiensis (Bt) transgenic crop plants for insect management. Beside this, the presence of unwanted marker gene(s) in the transgenic crops is also a major environmental and health concern. Thus, development of marker free transgenic crop plants expressing a new class of toxin having a different mortality mechanism is necessary for resistance management. In a previous study, we generated an engineered Cry2Aa (D42/K63F/K64P) toxin which has a different mortality mechanism as compared to first generation Bt toxin Cry1A, and this engineered toxin was found to enhance 4.1-6.6-fold toxicity against major lepidopteran insect pests of crop plants. In the present study, we have tested the potency of this engineered synthetic Cry2Aa (D42/K63F/K64P) toxin as a candidate in the development of insect resistant transgenic tobacco plants. Simultaneously, we have eliminated the selectable marker gene from the Cry2Aa (D42/K63F/K64P) expressing tobacco plants by exploiting the Cre/lox mediated recombination methodology, and successfully developed marker free T2 transgenic tobacco plants expressing the engineered Cry2Aa toxin. Realtime and western blot analysis demonstrated the expression of engineered toxin gene in transgenic plants. Insect feeding assays revealed that the marker free T2 progeny of transgenic plants expressing Cry2Aa (D42/K63F/K64P) toxin showed 82-92 and 52-61 % mortality to cotton leaf worm (CLW) and cotton bollworm (CBW) respectively. Thus, this engineered Cry2Aa toxin could be useful for the generation of insect resistant transgenic Bt lines which will protect the crop damages caused by different insect pests such as CLW and CBW.


Assuntos
Bacillus thuringiensis/genética , Proteínas de Bactérias/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Nicotiana/crescimento & desenvolvimento , Doenças das Plantas/prevenção & controle , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Animais , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Resistência à Doença , Endotoxinas/genética , Endotoxinas/farmacologia , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacologia , Lepidópteros/efeitos dos fármacos , Controle Biológico de Vetores , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/parasitologia , Engenharia de Proteínas , Nicotiana/genética , Nicotiana/parasitologia
8.
Planta ; 242(1): 269-81, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25912191

RESUMO

MAIN CONCLUSION: Ectopic expression of a deletion mutant ( ndv200 ) of Bacillus thuringiensis vip3BR gene in tobacco plant provided almost complete protection against major crop pests cotton boll worm ( Helicoverpa armigera ), black cut worm ( Agrotis ipsilon ) and cotton leaf worm ( Spodoptera littoralis ). Whereas vip3BR transgenic tobacco plant failed to protect themselves from these insects and showed resistance towards cotton leaf worm only. An analogous form of the Bacillus thuringiensis vip3Aa insecticidal toxin gene, named vip3BR, was identified and characterized, and exhibited similar attributes to the well-known Vip3Aa toxin. Vip3BR possessed broad-spectrum lepidopteran-specific insecticidal properties effective against most major crop pests of the Indian subcontinent. A Vip3BR toxin protein N-terminal deletion mutant, Ndv200, showed increased insecticidal potency relative to the native toxin, which conferred efficacy against four major crop pests, including cotton boll worm (Helicoverpa armigera), black cut worm (Agrotis ipsilon), cotton leaf worm (Spodoptera littoralis), and rice yellow stem borer (Scirpophaga incertulas). Ligand blot analysis indicated the Ndv200 toxin recognized the same larval midgut receptors as the native Vip3BR toxin, but differed from receptors recognized by Cry1A toxins. In the present study, we tested the prospect of the vip3BR and ndv200 toxin gene as candidate in development of insect-resistant genetically engineered crop plants by generating transgenic tobacco plant. The study revealed that the ndv200 mutant of vip3BR insecticidal toxin gene is a strong and prospective candidate for the next generation of genetically modified crop plants resistant to lepidopteran insects.


Assuntos
Bacillus thuringiensis/genética , Proteínas de Bactérias/toxicidade , Resistência à Doença/efeitos dos fármacos , Genes Bacterianos , Inseticidas/toxicidade , Lepidópteros/fisiologia , Nicotiana/parasitologia , Deleção de Sequência , Animais , Proteínas de Bactérias/genética , Bioensaio , Southern Blotting , DNA Bacteriano/genética , Sistema Digestório/efeitos dos fármacos , Sistema Digestório/metabolismo , Comportamento Alimentar , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Técnicas de Genotipagem , Lepidópteros/efeitos dos fármacos , Proteínas Mutantes/toxicidade , Plantas Geneticamente Modificadas , Ligação Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Nicotiana/efeitos dos fármacos , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...