Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(22): 15560-15570, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38756482

RESUMO

Intramolecular charge transfer (ICT)-based chromophores are highly sought after for designing near-infrared (NIR) absorbing and emitting dyes as well as for designing materials for nonlinear optical (NLO) applications. The properties of these 'push-pull' molecules can easily be modified by varying the electronic donor (D) and acceptor (A) groups as well as the π-conjugation linker. This study presents a methodical approach and employs quantum chemical analysis to explore the relationship between the structural features, electro-optical properties, and the NLO characteristics of molecules with D-π-A framework. The one- and two-photon absorption (2PA), linear polarizability (α), and first hyperpolarizability (ß) of some novel chromophores, consisting of a dimeric aza-Boron Dipyrromethene (aza-BODIPY) analogue, called, pyrrolopyrrole aza-BODIPY (PPAB), serving as the acceptor, have been investigated. The electronic donors used in this study are triphenylamine (TPA) and diphenylamine (DPA), and they are conjugated to the acceptor via thienyl or phenylene π-linkers. Additionally, the Hyper-Rayleigh Scattering (ßHRS), which enables direct estimation of the second-order NLO properties, is calculated for the studied chromophores with 1064 nm excitation in acetonitrile. The ß value shows a significant increase with increasing solvent polarity, indicating that the ICT plays a crucial role in shaping the NLO response of the studied molecules. The enhancement of the 2PA cross-section of the investigated molecules can also be achieved by modulating the combinations of donors and linkers. The results of our study indicate that the novel D-π-A molecules designed in this work demonstrate considerably higher hyperpolarizability values than the standard p-nitroaniline, making them promising candidates for future NLO applications.

2.
Small ; : e2401102, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573909

RESUMO

Exploitation of metal-organic framework (MOF) materials as active electrodes for energy storage or conversion is reasonably challenging owing to their poor robustness against various acidic/basic conditions and conventionally low electric conductivity. Keeping this in perspective, herein, a 3D ultramicroporous triazolate Fe-MOF (abbreviated as Fe-MET) is judiciously employed using cheap and commercially available starting materials. Fe-MET possesses ultra-stability against various chemical environments (pH-1 to pH-14 with varied organic solvents) and is highly electrically conductive (σ = 0.19 S m-1) in one fell swoop. By taking advantage of the properties mentioned above, Fe-MET electrodes give prominence to electrochemical capacitor (EC) performance by delivering an astounding gravimetric (304 F g-1) and areal (181 mF cm-2) capacitance at 0.5 A g-1 current density with exceptionally high cycling stability. Implementation of Fe-MET as an exclusive (by not using any conductive additives) EC electrode in solid-state energy storage devices outperforms most of the reported MOF-based EC materials and even surpasses certain porous carbon and graphene materials, showcasing superior capabilities and great promise compared to various other alternatives as energy storage materials.

3.
J Org Chem ; 89(7): 4384-4394, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38488484

RESUMO

This work introduces metal/column-free facile quantitative access to conformationally twisted catechol-linked organophosphonate (CAP) as a blue-emitting solid that could reversibly detect only 1,3-diaminopropane (DAP) and 1,2-ethylenediamine (EDA) vapors, belonging to industrially and pharmaceutically abundant crucial diamines. In CAP, two adjacent hydroxy groups in a benzene ring facilitate selective diamine-dihydroxy (amine-phenol type) interactions in the solid phase, leading to a quenched emission with selectively smaller aliphatic PAs, that is, DAP and EDA. The disparity was noticed with an isomeric resorcinol-linked emitter (RAP), detecting various polyamine vapors with superior sensitivity. A one-carbon-away placed hydroxy group in RAP can only generate a monoamine-hydroxy complex, not diamine-dihydroxy. The more acidic nature of resorcinol would prefer ionizing the amines and, consequently, creating amine/hydroxy interactions. More systematic investigations reveal an exciting role of amine-hydroxy realization for the catechol analog in the solid phase with a syn-anti conformation for CAP. Unlike CAP, RAP's available crystal void space creates considerable room in which to come closer and facilitates amine-phenol interactions. The role of phosphonates in the selective detection of PAs is also examined. Observed outcomes are substantiated by FT-IR, single-crystal X-ray diffraction, SEM, XPS, and mass spectroscopic studies. The proposed amine-hydroxy interactions are further supported by DFT-optimized molecular structures.

4.
J Mater Chem B ; 12(11): 2746-2760, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38379378

RESUMO

Maintaining the freshness of food is essential for a healthy and quality life. Nevertheless, it remains a global challenge. Hence, an easy detection and monitoring protocol would be highly desirable. A cyanoacrylic acid (CAA)-based fluorophore is manifested as a reusable platform that responds diversely against different concentrations of selective aliphatic biogenic amines (BAs) in both solution and vapor phases. Slow spoilage of the protein-rich food is progressively monitored through emission shifts visible to the naked eye. This fluorophore provides easy and naked-eye detection of the BA vapor through a change in emission, i.e., red → orange → orange-yellow → cyan → green and quantum yield enhancement, which occur in stepwise increments of vapor concentrations. The probe design includes π-conjugated functionalized fluorescent molecules linked to multiple twisting sites, resulting in both solid and solution-state emission. The attached carboxylic acid responds quickly with selective BAs, mainly putrescine (PUT), cadaverine (CAD), and spermidine (SPM), where the concentration-based emission variation has appeared to be distinct and prominent against PUT [sensitivity (µM): 2 (solution); 3.3 (vapour)]. The selectivity towards diamine can be clarified by the formation of carboxylic acid salts and the consequent proton exchanges between free and protonated amines. In addition, -CN···H interaction is likely to develop within this ammonium carboxylate system, providing extra stability. Such ammonium carboxylate salt formation and gradual change in the molecular arrangement, resulting in symmetry development, are validated by FT-IR and wide-angle X-ray diffraction studies. Besides, this fact is supported by DFT studies that validate intramolecular H-atom exchange between free amine and ammonium salt units. A fluorophore-coated coverslip, filter paper, or silica gel-coated Al-plate is fruitfully utilized to detect the freshness of fish and chicken, which reveals the potential of this probe to prevent food waste and control food safety.


Assuntos
Compostos de Amônio , Eliminação de Resíduos , Animais , Alimentos , Espectroscopia de Infravermelho com Transformada de Fourier , Aminas Biogênicas , Putrescina , Proteínas , Gases , Ácidos Carboxílicos
6.
Inorg Chem ; 63(1): 526-536, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38109558

RESUMO

Solution combustion-synthesized Ruddlesden-Popper oxides La1.4Sr0.6Ni0.9(Mn/Fe/Co)0.1O4+δ were explored for the methanol electro-oxidation reaction. With optimal doping of Sr2+ in the A site and Co2+ in the B site, Ni3+ with t2g6 dx2-y21 configuration in La1.4Sr0.6Ni0.9Co0.1O4+δ exhibited a tetragonal distortion with compression in axial bonds and elongation in equatorial bonds. This structural modification fostered an augmented overlap of dz2 orbitals with axial O 2p orbitals, leading to a heightened density of states at the Fermi level. Consequently, this facilitated not only elevated electrical conductivity but also a noteworthy reduction in the charge transfer resistance. These effects collectively contributed to the exceptional methanol oxidation activity of La1.4Sr0.6Ni0.9Co0.1O4+δ, as evidenced by an impressive current density of 21.4 mA cm-2 and retention of 95% of initial current density even after 10 h of prolonged reaction. The presence of Ni3+ further played a pivotal role in the creation of NiOOH, a crucial intermediate species, facilitated by the presence of surface oxygen vacancies. These factors synergistically enabled efficient methanol oxidation. In summary, our present study not only yields substantial insights but also paves the way for a novel avenue to fine-tune the activity of Ruddlesden-Popper oxides for the successful electro-oxidation of methanol.

7.
J Phys Chem A ; 127(42): 8900-8910, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37819527

RESUMO

In the lowest excited triplet state, the excited photosensitizer reacts with tissue oxygen and forms reactive oxygen species (ROS), which kills tissue cells in photodynamic therapy (PDT). Metal-free thio-based pure organic molecules and analogous nucleobases can be used as photosensitizers for PDT applications. Using quantum chemical methods, we studied one- and two-photon optical absorptions, fluorescence, and other excited-state properties of substituted thioxanthone derivatives for their potential as photosensitizers for PDT. Our calculated values were compared with the available experimental data. The calculation of the intersystem crossing rate constant for these photosensitizers explains the high quantum yield of the formation of ROS, as reported experimentally. The excited triplet-state population of the photosensitizer occurs through the 1π-π* → 3n-π* channel of intersystem crossing and increases in the presence of halogen substitution.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Oxigênio Singlete/química , Fotoquimioterapia/métodos , Espécies Reativas de Oxigênio
8.
J Phys Chem A ; 127(4): 886-893, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36653147

RESUMO

A comparative new strategy to enhance thermally activated delayed fluorescence (TADF) of through-space charge transfer (CT) molecules in organic light-emitting diodes (OLEDs) is investigated. Generally, TADF molecules adopt a twisted donor and acceptor structure to get a sufficiently small ΔEST and a higher value of the spin-orbit coupling matrix element (SOCME). However, molecules containing donor-phenyl bridge-acceptor (D-p-A) units and featuring π-stacked architectures have intramolecular CT contribution through space and exhibit high TADF efficiency. We have explored the insights into the TADF mechanism in D-p-A molecules using the density functional theory (DFT) and time-dependent DFT methods. The calculated optical absorption and ΔEST values are found to be in good agreement with available experimental data. Interestingly, we found the origin of the SOCME to be the twisted orientation of the donor and bridge moieties. Also, we predicted similar molecules with enhanced OLED efficiency with different substitutions.

9.
Chembiochem ; 23(6): e202100670, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-34985829

RESUMO

The thrombin binding aptamer (TBA) is a 15-mer DNA oligonucleotide (5'-GGT TGG TGT GGT TGG-3'), that can form a stable intramolecular antiparallel chair-like G-quadruplex structure. This aptamer shows anticoagulant properties by interacting with one of the two anion binding sites of thrombin, namely the fibrinogen-recognition exosite. Here, we demonstrate that terminal modification of TBA with aromatic fragments such as coumarin, pyrene and perylene diimide (PDI), improves the G-quadruplex stability. The large aromatic surface of these dyes can π-π stack to the G-quadruplex or to each other, thereby stabilizing the aptamer. With respect to the original TBA, monoPDI-functionalized TBA exhibited the most remarkable improvement in melting temperature (ΔTm ≈+18 °C) and displayed enhanced anticoagulant activity.


Assuntos
Aptâmeros de Nucleotídeos , Quadruplex G , Anticoagulantes/química , Anticoagulantes/farmacologia , Aptâmeros de Nucleotídeos/química , Sítios de Ligação , Trombina/metabolismo
10.
J Biomol Struct Dyn ; 40(7): 3110-3128, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33200681

RESUMO

SARS-COV-2, the novel coronavirus and root of global pandemic COVID-19 caused a severe health threat throughout the world. Lack of specific treatments raised an effort to find potential inhibitors for the viral proteins. The recently invented crystal structure of SARS-CoV-2 main protease (Mpro) and its key role in viral replication; non-resemblance to any human protease makes it a perfect target for inhibitor research. This article reports a computer-aided drug design (CADD) approach for the screening of 118 compounds with 16 distinct heterocyclic moieties in comparison with 5 natural products and 7 repurposed drugs. Molecular docking analysis against Mpro protein were performed finding isatin linked with a oxidiazoles (A2 and A4) derivatives to have the best docking scores of -11.22 kcal/mol and -11.15 kcal/mol respectively. Structure-activity relationship studies showed a good comparison with a known active Mpro inhibitor and repurposed drug ebselen with an IC50 value of -0.67 µM. Molecular Dynamics (MD) simulations for 50 ns were performed for A2 and A4 supporting the stability of the two compounds within the binding pocket, largely at the S1, S2 and S4 domains with high binding energy suggesting their suitability as potential inhibitors of Mpro for SARS-CoV-2.


Assuntos
Tratamento Farmacológico da COVID-19 , Isatina , Antivirais/química , Antivirais/farmacologia , Proteases 3C de Coronavírus , Humanos , Isatina/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , SARS-CoV-2 , Relação Estrutura-Atividade
11.
Chem Commun (Camb) ; 57(92): 12321-12324, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34735556

RESUMO

C 3-Symmetric triaminoguanidinium chloride is condensed with N-pentylphenothiazine carboxaldehyde to realise a thermally stable twisted organic salt on a gram scale. It appears as a nonmetallic economic salt having an integrated propeller shape with three tub-like cores and displays efficient reversible mechano- and thermo-fluorochromic behaviour. Unlike previous reports, the designed fluorescent, colorimetric thermometer works over a higher temperature range of 130-170 °C with five distinct colour variations.

12.
J Phys Chem A ; 125(31): 6674-6680, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34343011

RESUMO

Intersystem crossing and reverse intersystem crossing (rISC) processes were investigated in a boron-based donor-spiro-acceptor organic chromophore which shows thermally activated delayed fluorescence. Due to the perpendicular arrangement between donor and acceptor moieties, the HOMO and the LUMO are spatially separated, and the compound shows charge transfer (CT) transitions. We found both S1 and T1 excited states are CT in nature (i.e., electron and hole wave functions are localized on acceptor and donor units, respectively) and T2, which is higher in energy than S1 and T1, is locally excited in nature (i.e., both electron and hole wave functions are localized on an acceptor unit). Because of the same nature of excitation (i.e., CT here), the spin-orbit coupling matrix element between S1 and T1 is very low and insignificant exciton conversion occurs from the T1 state to the S1 state (and vice versa). Our combined time-dependent density functional theory and quantum dynamics simulation shows that the rISC process from the T1 state to the S1 state can be enhanced by the presence of a nearby local excited triplet state (i.e., T2 state here). A smaller gap between the T1 and T2 states efficiently establishes the rISC route.

13.
J Mol Graph Model ; 107: 107944, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34091175

RESUMO

Computer Aided Drug Design approaches have been applied to predict potential inhibitors for two different kinases, namely, cyclin-dependent kinase 2 (CDK2) and Epidermal Growth Factor Receptor (EGFR) which are known to play crucial role in cancer growth. We have designed alkyl and aryl substituted isatin-triazole ligands and performed molecular docking to rank and predict possible binding pockets in CDK2 and EGFR kinases. Best-scoring ligands in the kinase-binding pocket were selected from the docking study and subjected to molecular dynamics simulation. Absolute binding affinities were estimated from the MD trajectories using the MM/PBSA approach. The results suggest that aryl substituted isatin-triazole ligands are better binder to the kinases relative to its alkyl analogue. Furthermore, aryl substituted isatin-triazole ligands prefer binding to EGFR kinases relative to CDK2. The ligand binding pockets of the kinases are primarily hydrophobic in nature. Ligand-kinase binding is favoured by electrostatic and Van der Waals interactions, later being the major contributor. Large estimated negative binding affinities (~ -10 to -25 kcal/mol) indicate that the ligands might inhibit the kinases. Physicochemical property analysis suggests that the proposed ligands could be orally bio-available.


Assuntos
Isatina , Neoplasias , Eletrônica , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Triazóis
14.
Chemistry ; 25(70): 16007-16011, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31617260

RESUMO

Unprecedented ambient triplet-mediated emission in core-substituted naphthalene diimide (cNDI) derivatives is unveiled via delayed fluorescence and room temperature phosphorescence. Carbazole core-substituted cNDIs, with a donor-acceptor design, showed deep-red triplet emission in solution processable films with high quantum yield. This study, with detailed theoretical calculations and time-resolved emission experiments, enables new design insights into the triplet harvesting of cNDIs; an important family of molecules which has been, otherwise, extensively been investigated for its n-type electronic character and tunable singlet fluorescence.

15.
Phys Chem Chem Phys ; 21(31): 17343-17355, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31355378

RESUMO

The present work aims to study the effect of solvent as well as arrangement of donor-acceptor groups on linear and non-linear optical (NLO) response properties of two experimentally studied intramolecular charge-transfer (ICT)-based fluorescent sensors. One of them (molecule 1) is a donor-acceptor (D-A) system with hemicyanine and dimethylanilino as electron withdrawing and donating groups, respectively, while the other one (molecule 3) is molecule 1 fused with a boron-dipyrromethene (BODIPY) moiety. BODIPY acts as the electron acceptor group of molecule 2 that as well consists of dimethylanilino as the electron donor. Density functional theory (DFT) as well as time-dependent DFT has been employed to optimize the geometry of the molecules, followed by computation of dipole moment (µ), static first hyperpolarizability (ßtotal), and one- and two-photon absorption (TPA) strengths. The results reveal that dipole moment as well as total static first hyperpolarizability (ßtotal) of the studied molecules is dominated by the respective components in the direction of charge transfer. The ratio of vector component of first hyperpolarizability (ßvec) to ßtotal also supports the unidirectional charge transfer in the studied systems. In molecule 3, which is a donor-acceptor-acceptor (D-A-A)-type system, the BODIPY moiety is found to play a major role in controlling the NLO response over the other acceptor group. Solvents are also found to play an important role in controlling the linear as well as NLO response of the studied systems. A significant increase in the first hyperpolarizability as well as TPA cross-section of the studied molecules is predicted due to an increase in the dielectric constant of the medium. The results presented are expected to provide a clue in tuning the NLO response of many ICT-based chromophores, especially those with D-A-A arrangements.

16.
Nanoscale ; 11(9): 4001-4007, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30768107

RESUMO

Two-dimensional (2D) perovskites recently attracted significant interest due to their unique and novel optoelectronic properties. CsPb2Br5, a 2D inorganic perovskite halide, is an indirect band gap semiconductor, and hence it is not supposed to be luminescent. However, a fundamental understanding of the origin of its luminescence properties is still lacking as there are contradictory literature reports present concerning its luminescence properties. Here, we demonstrate a single pot solution based transformation of 2D CsPb2Br5 nanosheets from the nanocrystals of 3D CsPbBr3 and investigate the origin of its luminescence properties by detailed experiments and density functional theory (DFT) calculations. The photoluminescence of CsPb2Br5 originates from the different amorphous lead bromide ammonium complexes which are present at the surface of the nanosheets. We have also highlighted the formation mechanism of 2D nanosheets from 3D CsPbBr3 nanocrystals. These combined theoretical and experimental studies offer significant insights into the optical properties and formation mechanism of 2D CsPb2Br5 perovskites.

17.
Angew Chem Int Ed Engl ; 57(52): 17115-17119, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30376209

RESUMO

Ambient solution and amorphous state room temperature phosphorescence (RTP) from purely organic chromophores is rarely achieved. Remarkable stabilization of triplet excitons is realized to obtain deep red phosphorescence in water and in amorphous film state under ambient conditions by a unique supramolecular hybrid assembly between inorganic laponite clay and heavy atom core substituted naphthalene diimide (NDI) phosphor. Structural rigidity and oxygen tolerance of the inorganic template along with controlled molecular organization via supramolecular scaffolding are envisaged to alleviate the unprecedented aqueous phase phosphorescence.

18.
Angew Chem Int Ed Engl ; 57(41): 13662-13665, 2018 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-30160815

RESUMO

Photochemical reactions typically proceed via multiple reaction pathways, yielding a variety of isomers and products. Enhancing the selectivity is challenging. Now, the potential of supramolecular control for oxidative photocyclization of a tetraarylethylene, containing a stereogenic -C=C- bond, is demonstrated. In solution, this photochemical reaction produces three constitutional isomers (substituted phenanthrenes), with slow kinetics. When the reactant is assembled into a crystalline framework, only one product forms with accelerated kinetics. Key to this selectivity enhancement is the integration into a surface grown metal-organic framework (SURMOF); the dramatic gain in selectivity is ascribed to the hindrance of the rotational freedom of the -C=C- double bond. The structure of the MOF is key; the corresponding reaction in the solid does not result in such a high increase in selectivity. A striking change of luminescence properties after photocyclization is observed.

19.
J Mol Model ; 24(9): 246, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30128608

RESUMO

The optical absorption, fluorescence, and phosphorescence properties along with the intersystem crossing (ISC) rate constants of a series of N-substituted naphthalimides (NNIs), which can be used as organic emitters, were calculated using density functional theory (DFT) and time-dependent DFT (TDDFT). The calculated absorption, fluorescence, and phosphorescence energies as well as the fluorescence and ISC rate constants were found to be in good agreement with available experimental data. According to the calculations, the first excited singlet and first excited triplet states are π-π* in nature, and 1π-π* â†’ 3n-π* is the dominant ISC channel for 1,8-naphthalimide (NI) and N-methyl-1,8-naphthalimide (Me-NI). Intermolecular charge-transfer (CT) states are observed in the energy region between the 1π-π* and 3π-π* states for NNIs with an electron-donating group. The presence of these CT states leads to a reduction in the S1-state and T1-state energy splitting in NNIs with an electron-donating group compared to the energy splitting observed in NI and Me-NI. The singlet CT state (1CT) has very weak emission oscillator strength, so it is nonemissive. For NNIs with an electron-donating group, the 1CT â†’ 3π-π* transition was found to be the dominant ISC channel. Our results indicate that for NNIs with an electron-donating group, the nonemissive S1 state (1CT) transits to the T1 state (3π-π*) via ISC. The 1CT â†’ 3π-π* transition increases the population of the T1 state and thus the phosphorescence quantum yield at room temperature, even in the absence of a heavy atom. Graphical Abstract The S1 state (1CT), which is nonemissive, transits to the T1 state (3π-π*) via intersystem crossing and increases the population of the T1 state in N-substituted naphthalimides with an electron-donating group.

20.
J Am Chem Soc ; 139(11): 4042-4051, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28244314

RESUMO

The rates for up-conversion intersystem crossing (UISC) from the T1 state to the S1 state are calculated for a series of organic emitters with an emphasis on thermally activated delayed fluorescence (TADF) materials. Both the spin-orbit coupling and the energy difference between the S1 and T1 states (ΔEST) are evaluated, at the density functional theory (DFT) and time-dependent DFT levels. The calculated UISC rates and ΔEST values are found to be in good agreement with available experimental data. Our results underline that small ΔEST values and sizable spin-orbit coupling matrix elements have to be simultaneously realized in order to facilitate UISC and ultimately TADF. Importantly, the spatial separation of the highest occupied and lowest unoccupied molecular orbitals of the emitter, a widely accepted strategy for the design of TADF molecules, does not necessarily lead to a sufficient reduction in ΔEST; in fact, either a significant charge-transfer (CT) contribution to the T1 state or a minimal energy difference between the local-excitation and charge-transfer triplet states is required to achieve a small ΔEST. Also, having S1 and T1 states of a different nature is found to strongly enhance spin-orbit coupling, which is consistent with the El-Sayed rule for ISC rates. Overall, our results indicate that having either similar energies for the local-excitation and charge-transfer triplet states or the right balance between a substantial CT contribution to T1 and somewhat different natures of the S1 and T1 states, paves the way toward UISC enhancement and thus TADF efficiency improvement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...