Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(50): 58850-58860, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38055951

RESUMO

Transparent wood composites (TWs) offer the possibility of unique coloration effects. A colored transparent wood composite (C-TW) with enhanced fire retardancy was impregnated by metal ion solutions, followed by methyl methacrylate (MMA) impregnation and polymerization. Bleached birch wood with a preserved hierarchical structure acted as a host for metal ions. Cobalt, nickel, copper, and iron metal salts were used. The location and distribution of metal ions in C-TW as well as the mechanical performance, optical properties, and fire retardancy were investigated. The C-TW coloration is tunable by controlling the metal ion species and concentration. The metal ions reduced heat release rates and limited the production of smoke during forced combustion tests. The potential for scaled-up production was verified by fabricating samples with a dimension of 180 × 100 × 1 (l × b × h) mm3.

2.
ACS Appl Mater Interfaces ; 13(2): 3270-3277, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33415982

RESUMO

Transparent wood (TW)-based composites are of significant interest for smart window applications. In this research, we demonstrate a facile dual-stimuli-responsive chromic TW where optical properties are reversibly controlled in response to changes in temperature and UV-radiation. For this functionality, bleached wood was impregnated with solvent-free thiol and ene monomers containing chromic components, consisting of a mixture of thermo- and photoresponsive chromophores, and was then UV-polymerized. Independent optical properties of individual chromic components were retained in the compositional mixture. This allowed to enhance the absolute optical transmission to 4 times above the phase change temperature. At the same time, the transmission at 550 nm could be reduced 11-77%, on exposure to UV by changing the concentration of chromic components. Chromic components were localized inside the lumen of the wood structure, and durable reversible optical properties were demonstrated by multiple cycling testing. In addition, the chromic TW composites showed reversible energy absorption capabilities for heat storage applications and demonstrated an enhancement of 64% in the tensile modulus as compared to a native thiol-ene polymer. This study elucidates the polymerization process and effect of chromic components distribution and composition on the material's performance and perspectives toward the development of smart photoresponsive windows with energy storage capabilities.

3.
ACS Omega ; 3(11): 15666-15678, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31458222

RESUMO

Electrospinning of polymers typically requires high solution concentrations necessitated by the requirement of sufficient chain overlaps to achieve the required viscoelastic properties. Here, we report on a novel supramolecular approach, involving polymer/surfactant complexes, which allows for a significant reduction in the solution concentration of polymer for electrospinning. The approach involved supramolecular complexation of poly(4-vinylpyridine) (P4VP) with a surfactant, dodecylbenzenesulfonic acid (DBSA), via ionic interactions. The supramolecular complexation of P4VP with DBSA led to a significant increase in the solution viscosity even at a DBSA/4VP molar ratio as low as 0.05. Furthermore, the solution viscosity of the P4VP/DBSA complex increased significantly with the DBSA/4VP molar ratio. The increase in the viscosity for the P4VP/DBSA complexes was plausibly due to the formation of physical cross-links between P4VP chains driven by hydrophobic interactions between the surfactant tails. The formation of such physical cross-links led to a significant decrease in the solution concentration needed for the onset of semidilute entangled regime. Thus, the P4VP/DBSA complexes could be electrospun at a much lower concentration. The critical solution concentration to obtain bead-free uniform nanofibers of P4VP/DBSA complexes in dimethylformamide was reduced to 12% (w/v), which was not possible for neat P4VP solution even up to approximately 35% (w/v). Furthermore, small-angle X-ray scattering and polarized optical microscopy results revealed that the electrospun nanofibers of P4VP/DBSA complexes self-assembled in lamellar mesomorphic structures similar to that observed in bulk. However, the electrospun nanofibers exhibited significantly improved lamellar order, which was plausibly facilitated by the preferred orientation of P4VP chains along the fiber axis.

4.
RSC Adv ; 8(32): 17989-18007, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35542103

RESUMO

The confined crystallization behaviour of poly(ethylene oxide) (PEO) has been studied in electrospun nanofibers of the phase-separated blends of polystyrene (PS) and PEO compatibilized with polystyrene-block-poly(ethylene oxide) (PS-b-PEO) block copolymer. The PS was present as the majority component such that the electrospun nanofibers consisted of PEO domains dispersed in the PS matrix. The phase separation in the blend occurred under the radial constraint of the nanofibers which led to the formation of small-sized fibrillar PEO domains. The use of block copolymer compatibilizer resulted in a noticeable decrease in the PEO domain size in the as-spun nanofibers. Moreover, the decrease in the domain size and domain connectivity was more substantial in the thermally annealed blend nanofibers due to the suppression of the domain coalescence mechanism resulting from the localization of the PS-b-PEO block copolymer at the interface. Consequently, the fraction of PEO domains crystallizing via homogeneous nucleation increased in the compatibilized blend nanofibers due to the presence of higher number of heterogeneity free PEO domains and disruption in their spatial connectivity. Interestingly, in the compatibilized blend nanofibers consisting of low molecular weight PEO, additional crystallization event attributed to surface nucleation was observed. The surface nucleation, plausibly, resulted from the formation of wet-brush structures where the PEO homopolymers homogeneously wet the PEO blocks present at the interface. In such a scenario, the PEO crystallization occurred via surface nucleation at the domain interface. The surface nucleated crystallization was absent in the compatibilized blend nanofibers composed of high molecular weight PEO presumably due to the formation of morphology with dry-brush structures.

5.
Phys Chem Chem Phys ; 19(40): 27651-27663, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28983538

RESUMO

We investigate the self-assembly of a cylinder-forming polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) block copolymer (BCP) mixed with trioctylphosphine oxide (TOPO) capped cadmium selenide (CdSe) quantum dots (QDs). The QDs were found to be enthalpically compatible with the P4VP chains via ligand displacement of TOPO from the QD surface. However, the QDs were found to localize preferentially at the PS/P4VP interphase plausibly to gain translational entropy in order to further lower the energetics of the self-assembled structure. Interestingly, the morphological transformation observed with increasing weight fraction of the QDs in the BCP/QD composite was driven by the migration of the displaced TOPO from the QD surface to the PS phase, effectively increasing its total volume fraction. Hence, the PS-b-P4VP BCP with PS as the minority block displayed lamellar morphology in its composite with QDs. Furthermore, the preferred localization of the QDs at the PS/P4VP interface led to the formation of a trilayer lamellar morphology which was deduced from the suppression of the primary scattering peak, relative to higher order peaks in the SAXS data. The morphological transformation was accompanied by a significant increase in the domain spacing due to excessive stretching of the longer P4VP chains of the asymmetric block copolymer. However, in the PS-b-P4VP/CdSe composites with P4VP as the minority block, cylindrical morphology was retained and the domain spacing decreased due to dominance of the co-surfactant effect as well as interfacial localization of CdSe QDs. We also demonstrate that these PS-b-P4VP/CdSe self-assembled hybrid materials could further be used to obtain isolated core-shell nanoobjects, such as nanofibers and nanosheets, containing CdSe QDs. The nanoobjects so obtained exhibited photoluminescence properties typical of CdSe quantum dots. These photoluminescent polymer nanoobjects could have potential applications in biological targeting and fluorescence labeling.

6.
Soft Matter ; 13(8): 1569-1582, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28127604

RESUMO

We have studied the crystallization behavior of crystalline/crystalline blends of poly(ethylene oxide) (PEO) and poly(ε-caprolactone) (PCL) in electrospun nanofibers fabricated from ternary blends of polystyrene (PS), PEO, and PCL, where PS was present as the majority component. It was demonstrated previously that PEO in PS/PEO binary blend nanofibers with a low PEO weight fraction (≦0.2) crystallized predominantly through homogenous nucleation due to the small PEO domain size which excluded the presence of heterogeneities (Soft Matter, 2016, 12, 5110). Here, it was found that PCL in PS/PCL binary blend nanofibers exhibited similar behavior, but at a much lower weight fraction of PCL (≦0.1) due to the presence of an inherently higher concentration of heterogeneities in the PCL homopolymer. In the PS/PEO/PCL ternary blend nanofibers, where the combined weight fraction of PEO and PCL was kept at 0.2 or less, the crystallization of the two components took place separately through both heterogeneous and homogenous nucleation mechanisms. The phase segregated crystallization behavior was further confirmed by the melting behavior of the blend nanofibers and wide angle X-ray diffraction (WAXD) measurements. Most significantly, the homogenous nucleation of both PEO and PCL was suppressed whereas the heterogeneous nucleation was enhanced in the ternary blend nanofibers even at very low weight fraction of PEO or PCL. This was plausibly attributed to the coupling between the crystallization and the liquid-liquid phase separation (LLPS) of the PEO/PCL mixture dispersed in the PS matrix during non-isothermal cooling of the blend nanofibers. Furthermore, it was observed that thermal treatment of the PS/PEO/PCL blend nanofibers above the glass transition temperature of PS further promoted the heterogeneous nucleation-initiated crystallization of PEO because of a complex interplay between Plateau-Rayleigh instability-induced domain breakup and its further coalescence and demixing within the PEO/PCL domains embedded in the PS matrix.

7.
Soft Matter ; 12(23): 5110-20, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27184694

RESUMO

We have studied the confined crystallization behaviour of poly(ethylene oxide) (PEO) in the electrospun nanofibers of the phase-separated blends of polystyrene (PS) and PEO, where PS was present as the major component. The size and shape of PEO domains in the nanofibers were considerably different from those in the cast films, presumably because of the nano-dimensions of the nanofibers and the extensional forces experienced by the polymer solution during electrospinning. The phase-separated morphology in turn influenced the crystallization behaviour of PEO in the blend nanofibers. At a PEO weight fraction of ≥0.3, crystallization occurred through a heterogeneous nucleation mechanism similar to that in cast blend films. However, as the PEO weight fraction in the blend nanofibers was reduced from 0.3 to 0.2, an abrupt transformation of the nucleation mechanism from the heterogeneous to predominantly homogenous type was observed. The change in the nucleation mechanism implied a drastic reduction of the spatial continuity of PEO domains in the nanofibers, which was not encountered in the cast film. The melting temperature and crystallinity of the PEO crystallites developed in the nanofibers were also significantly lower than those in the corresponding cast films. The phenomena observed were reconciled by the morphological observation, which revealed that the phase separation under the radial constraint of the nanofibers led to the formation of small-sized fibrillar PEO domains with limited spatial connectivity. The thermal treatment of the PS/PEO blend nanofibers above the glass transition temperature of PS induced an even stronger confinement effect on PEO crystallization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA