Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proteins ; 85(1): 103-116, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27802572

RESUMO

The tunneling-fold (T-fold) structural superfamily has emerged as a versatile protein scaffold of diverse catalytic activities. This is especially evident in the pathways to the 7-deazaguanosine modified nucleosides of tRNA queuosine and archaeosine. Four members of the T-fold superfamily have been confirmed in these pathways and here we report the crystal structure of a fifth enzyme; the recently discovered amidinotransferase QueF-Like (QueF-L), responsible for the final step in the biosynthesis of archaeosine in the D-loop of tRNA in a subset of Crenarchaeota. QueF-L catalyzes the conversion of the nitrile group of the 7-cyano-7-deazaguanine (preQ0 ) base of preQ0 -modified tRNA to a formamidino group. The structure, determined in the presence of preQ0 , reveals a symmetric T-fold homodecamer of two head-to-head facing pentameric subunits, with 10 active sites at the inter-monomer interfaces. Bound preQ0 forms a stable covalent thioimide bond with a conserved active site cysteine similar to the intermediate previously observed in the nitrile reductase QueF. Despite distinct catalytic functions, phylogenetic distributions, and only 19% sequence identity, the two enzymes share a common preQ0 binding pocket, and likely a common mechanism of thioimide formation. However, due to tight twisting of its decamer, QueF-L lacks the NADPH binding site present in QueF. A large positively charged molecular surface and a docking model suggest simultaneous binding of multiple tRNA molecules and structure-specific recognition of the D-loop by a surface groove. The structure sheds light on the mechanism of nitrile amidation, and the evolution of diverse chemistries in a common fold. Proteins 2016; 85:103-116. © 2016 Wiley Periodicals, Inc.


Assuntos
Amidinotransferases/química , Proteínas Arqueais/química , Guanosina/análogos & derivados , Pirimidinonas/química , Pyrobaculum/enzimologia , Pirróis/química , Processamento Pós-Transcricional do RNA , Amidinotransferases/genética , Amidinotransferases/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Guanosina/química , Guanosina/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Pirimidinonas/metabolismo , Pyrobaculum/genética , Pirróis/metabolismo , RNA Arqueal/química , RNA Arqueal/genética , RNA Arqueal/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
2.
IUBMB Life ; 63(11): 1027-36, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22031496

RESUMO

Arginase is a binuclear Mn(2+) -metalloenzyme of urea cycle that hydrolyzes arginine to ornithine and urea. Unlike other arginases, the Helicobacter pylori enzyme is selective for Co(2+) and has all conserved motifs except (88) SSEHA(92) (instead of GGDHS). To examine the role of this motif in the activity and stability, steady-state kinetics, mutational analysis, thermal denaturation, and homology modeling were carried out. With a series of single and double mutants, we show that mutations of Ser88 and Ala92 to its analogous residues in other arginases individually enhance the catalytic activity. This is supported by the modeling studies, where the motif plays a role in alteration at the active site structure compared to other arginases. Mutational analysis further shows that both Glu90 and His91 are important for the activity, as their mutations lead to significant decrease in the catalytic efficiency but they appear to act in two different ways; Glu90 has a more catalytic role as its mutant displays binding of the two metal ions per monomer of the protein, but His91 plays a critical role in retaining the metal ion at the active site as its mutation exhibits a loss of one metal ion. Thermal denaturation studies demonstrated that Ser88 and His91 both play crucial roles in the stability of the protein as their mutants showed a decrease in the T(m) by ∼10-11°. Unlike wild type, the metal ions have larger role in providing the stability to the mutant proteins. Thus, our data demonstrate that the motif not only plays an important role in the activity but also critical in the stability of the protein.


Assuntos
Arginase/metabolismo , Helicobacter pylori/enzimologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Arginase/química , Arginase/genética , Domínio Catalítico , Cobalto/química , Ensaios Enzimáticos , Estabilidade Enzimática , Cinética , Manganês/química , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Alinhamento de Sequência , Homologia Estrutural de Proteína , Temperatura de Transição
3.
Biochem Pharmacol ; 78(4): 420-9, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19394314

RESUMO

The enzyme group-VIIA phospholipase A2 (gVIIA-PLA2) is bound to lipoproteins in human blood and hydrolyzes the ester bond at the sn-2 position of phospholipid substrates with a short sn-2 chain. The enzyme belongs to a serine hydrolase superfamily of enzymes, which react with organophosphorus (OP) nerve agents. OPs ultimately exert their toxicity by inhibiting human acetycholinesterase at nerve synapses, but may additionally have detrimental effects through inhibition of other serine hydrolases. We have solved the crystal structures of gVIIA-PLA2 following inhibition with the OPs diisopropylfluorophosphate, sarin, soman and tabun. The sarin and soman complexes displayed a racemic mix of P(R) and P(S) stereoisomers at the P-chiral center. The tabun complex displayed only the P(R) stereoisomer in the crystal. In all cases, the crystal structures contained intact OP adducts that had not aged. Aging refers to a secondary process OP complexes can go through, which dealkylates the nerve agent adduct and results in a form that is highly resistant to either spontaneous or oxime-mediated reactivation. Non-aged OP complexes of the enzyme were corroborated by trypsin digest and matrix-assisted laser desorption ionization mass spectrometry of OP-enzyme complexes. The lack of stereoselectivity of sarin reaction was confirmed by gas chromatography/mass spectrometry using a chiral column to separate and quantitate the unbound stereoisomers of sarin following incubation with enzyme. The structural details and characterization of nascent reactivity of several toxic nerve agents is discussed with a long-term goal of developing gVIIA-PLA2 as a catalytic bioscavenger of OP nerve agents.


Assuntos
Substâncias para a Guerra Química/farmacologia , Compostos Organofosforados/farmacologia , Inibidores de Fosfolipase A2 , Sítios de Ligação , Substâncias para a Guerra Química/química , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Cristalização , Cristalografia por Raios X , Ésteres/metabolismo , Humanos , Hidrólise , Modelos Moleculares , Estrutura Molecular , Organofosfatos/toxicidade , Compostos Organofosforados/química , Fosfolipases A2/química , Sarina/toxicidade , Sinapses/efeitos dos fármacos
4.
Biochemistry ; 48(15): 3425-35, 2009 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-19271773

RESUMO

Insecticide and nerve agent organophosphorus (OP) compounds are potent inhibitors of the serine hydrolase superfamily of enzymes. Nerve agents, such as sarin, soman, tabun, and VX exert their toxicity by inhibiting human acetycholinesterase at nerve synapses. Following the initial phosphonylation of the active site serine, the enzyme may reactivate spontaneously or through reaction with an appropriate nucleophilic oxime. Alternatively, the enzyme-nerve agent complex can undergo a secondary process, called "aging", which dealkylates the nerve agent adduct and results in a product that is highly resistant to reactivation by any known means. Here we report the structures of paraoxon, soman, and sarin complexes of group-VIII phospholipase A2 from bovine brain. In each case, the crystal structures indicate a nonaged adduct; a stereoselective preference for binding of the P(S)C(S) isomer of soman and the P(S) isomer of sarin was also noted. The stability of the nonaged complexes was corroborated by trypsin digest and electrospray ionization mass spectrometry, which indicates nonaged complexes are formed with diisopropylfluorophosphate, soman, and sarin. The P(S) stereoselectivity for reaction with sarin was confirmed by reaction of racemic sarin, followed by gas chromatography/mass spectrometry using a chiral column to separate and quantitate each stereoisomer. The P(S) stereoisomers of soman and sarin are known to be the more toxic stereoisomers, as they react preferentially to inhibit human acetylcholinesterase. The results obtained for nonaged complexes of group-VIII phospholipase A2 are compared to those obtained for other serine hydrolases and discussed to partly explain determinants of OP aging. Furthermore, structural insights can now be exploited to engineer variant versions of this enzyme with enhanced nerve agent binding and hydrolysis functions.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/química , Encéfalo/enzimologia , Substâncias para a Guerra Química/química , Sarina/química , Soman/química , Acetilcolinesterase/química , Animais , Bovinos , Cristalografia por Raios X , Remoção de Radical Alquila , Humanos , Inseticidas/química , Paraoxon/química , Sarina/farmacologia , Soman/farmacologia , Sinapses/química , Sinapses/efeitos dos fármacos
5.
Protein Pept Lett ; 16(1): 97-100, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19149681

RESUMO

The plasma form of the human enzyme platelet activating factor acetylhydrolase (PAF-AH) has been crystallized, and X-ray diffraction data were collected at a synchrotron source to a resolution of 1.47 A. The crystals belong to space group C2, with unit cell parameters of a = 116.18, b = 83.06, c = 96.71 A, and beta= 115.09 degrees and two molecules in the asymmetric unit. PAF-AH functions as a general anti-inflammatory scavenger by reducing the levels of the signaling molecule PAF. Additionally, the LDL bound enzyme has been linked to atherosclerosis due to its hydrolytic activities of pro-inflammatory agents, such as sn-2 oxidatively fragmented phospholipids.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/química , Cristalização , Cristalografia por Raios X , Humanos
6.
J Biol Chem ; 283(46): 31617-24, 2008 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-18784071

RESUMO

Human plasma platelet-activating factor (PAF) acetylhydrolase functions by reducing PAF levels as a general anti-inflammatory scavenger and is linked to anaphylactic shock, asthma, and allergic reactions. The enzyme has also been implicated in hydrolytic activities of other pro-inflammatory agents, such as sn-2 oxidatively fragmented phospholipids. This plasma enzyme is tightly bound to low and high density lipoprotein particles and is also referred to as lipoprotein-associated phospholipase A2. The crystal structure of this enzyme has been solved from x-ray diffraction data collected to a resolution of 1.5 angstroms. It has a classic lipase alpha/beta-hydrolase fold, and it contains a catalytic triad of Ser273, His351, and Asp296. Two clusters of hydrophobic residues define the probable interface-binding region, and a prediction is given of how the enzyme is bound to lipoproteins. Additionally, an acidic patch of 10 carboxylate residues and a neighboring basic patch of three residues are suggested to play a role in high density lipoprotein/low density lipoprotein partitioning. A crystal structure is also presented of PAF acetylhydrolase reacted with the organophosphate compound paraoxon via its active site Ser273. The resulting diethyl phosphoryl complex was used to model the tetrahedral intermediate of the substrate PAF to the active site. The model of interface binding begins to explain the known specificity of lipoprotein-bound substrates and how the active site can be both close to the hydrophobic-hydrophilic interface and at the same time be accessible to the aqueous phase.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/química , 1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Lipoproteínas/química , Lipoproteínas/metabolismo , Fator de Ativação de Plaquetas/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Biocatálise , Cristalografia por Raios X , Humanos , Modelos Moleculares , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Especificidade por Substrato
7.
J Proteome Res ; 2(3): 255-63, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12814265

RESUMO

Among the aromatic residues in protein structures, histidine (His) is unique, as it can exist in the neutral or positively charged form at the physiological pH. As such, it can interact with other aromatic residues as well as form hydrogen bonds with polar and charged (both negative and positive) residues. We have analyzed the geometry of interaction of His residues with nine other planar side chains containing aromatic (residues Phe, Tyr, Trp, and His), carboxylate (Asp and Glu), carboxamide (Asn and Gln) and guanidinium (Arg) groups in 432 polypeptide chains. With the exception of the aspartic (Asp) and glutamic (Glu) acid side-chains, all other residues prefer to interact in a face-to-face or offset-face-stacked orientation with the His ring. Such a geometry is different from the edge-to-face relative orientation normally associated with the aromatic-aromatic interaction. His-His pair prefers to interact in a face-to-face orientation; however, when both the residues bind the same metal ion, the interplanar angle is close to 90 degrees. The occurrence of different interactions (including the nonconventional N-H...pi and C-H...pi hydrogen bonds) have been correlated with the relative orientations between the interacting residues. Several structural motifs, mostly involved in binding metal ions, have been identified by considering the cases where His residues are in contact with four other planar moieties. About 10% of His residues used here are also found in sequence patterns in PROSITE database. There are examples of the amino end of the Lys side chain interacting with His residues in such a way that it is located on an arc around a ring nitrogen atom.


Assuntos
Aminoácidos Aromáticos/metabolismo , Aminoácidos Básicos/metabolismo , Histidina/metabolismo , Proteínas/metabolismo , Motivos de Aminoácidos , Ligação de Hidrogênio , Lisina/metabolismo , Nitrogênio/metabolismo , Estrutura Secundária de Proteína
8.
Protein Eng ; 15(8): 659-67, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12364580

RESUMO

The quantification of the packing of residues in proteins and docking of ligands to macromolecules is important in understanding protein stability and drug design. The number of atoms in contact (within a distance of 4.5 A) can be used to describe the local environment of a residue. As this number increases, the accessible surface area (ASA) of the residue decreases exponentially and the variation can be described in terms of an exponential equation of the form y = a(1)exp(-x/a(2)), each residue having its own set of parameters a(1) and a(2), which also depend on whether the whole residue or just the side chain is considered. Hydrophobic and hydrophilic residues can be distinguished on the basis of both the average number of surrounding atoms and the variation of ASA. For a given number of partner atoms, a comparison of the observed ASA with the expected value obtained from the equation provides a method of assessing the goodness of packing of the residue in a protein structure or its importance in the binding of a ligand. The equation provides a method to estimate the ASA of a protein molecule and the average relative accessibilities of different residues, the latter being inversely correlated with hydrophobicity values.


Assuntos
Aminoácidos/química , Proteínas/química , Bases de Dados de Proteínas , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Solventes , Propriedades de Superfície
9.
Protein Eng ; 15(2): 91-100, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11917145

RESUMO

To understand the role of aromatic-aromatic interactions in imparting specificity to the folding process, the geometries of four aromatic residues with different sequence spacing, located in alpha-helices or five residues from helical ends, interacting with each other have been elucidated. The geometry is found to depend on the sequence difference. Specific interactions (C-H...pi and N-H...pi) which result from this geometry may cause a given pair of residues (such as Phe-His) with a particular sequence difference to occur more than expected. The most conspicuous residue in an aromatic pair in the context of helix stability is His, which is found at the last (C1) position or the two positions (Ncap and Ccap) immediately flanking the helix. An alpha-helix and a contiguous 3(10)-helix or two helices separated by a non-helical residue can have interacting aromatic pairs, the geometry of interaction and the relative orientation between the helices being rather fixed. Short helices can also have interacting residues from either side.


Assuntos
Aminoácidos Aromáticos/química , Estrutura Secundária de Proteína , Proteínas/química , Ligação Proteica , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA