Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 374: 627-638, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39208934

RESUMO

Liver diseases pose significant challenges to global public health. In the realm of drug discovery and development, overcoming 'on-target off-tissue' effects remains a substantial barrier for various diseases. In this study, we have pioneered a Liver-Targeting Chimera (LIVTAC) approach using a proteolysis-targeting chimera (PROTAC) molecule coupled to the liver-specific asialoglycoprotein receptor (ASGPR) through an innovative linker attachment strategy for the precise induction of target protein degradation within the liver. As a proof-of-concept study, we designed XZ1606, a mammalian bromodomain and extra-terminal domain (BET)-targeting LIVTAC agent, which not only demonstrated enduring tumor suppression (over 2 months) in combination with sorafenib but also an improved safety profile, notably ameliorating the incidence of thrombocytopenia, a common and severe on-target dose-limiting toxic effect associated with conventional BET inhibitors. These encouraging results highlight the potential of LIVTAC as a versatile platform for addressing a broad spectrum of liver diseases.

2.
Phytomedicine ; 133: 155882, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39096545

RESUMO

BACKGROUND: Treating Idiopathic pulmonary fibrosis (IPF) remains challenging owing to its relentless progression, grim prognosis, and the scarcity of effective treatment options. Emerging evidence strongly supports the critical role of accelerated senescence in alveolar epithelial cells (AECs) in driving the progression of IPF. Consequently, targeting senescent AECs emerges as a promising therapeutic strategy for IPF. PURPOSE: Curcumin analogue EF24 is a derivative of curcumin and shows heightened bioactivity encompassing anti-inflammatory, anti-tumor and anti-aging properties. The objective of this study was to elucidate the therapeutic potential and underlying molecular mechanisms of EF24 in the treatment of IPF. METHODS: A549 and ATII cells were induced to become senescent using bleomycin. Senescence markers were examined using different methods including senescence-associated ß-galactosidase (SA-ß-gal) staining, western blotting, and q-PCR. Mice were intratracheally administrated with bleomycin to induce pulmonary fibrosis. This was validated by micro-computed tomography (CT), masson trichrome staining, and transmission electron microscope (TEM). The role and underlying mechanisms of EF24 in IPF were determined in vitro and in vivo by evaluating the expressions of PTEN, AKT/mTOR/NF-κB signaling pathway, and mitophagy using western blotting or flow cytometry. RESULTS: We identified that the curcumin analogue EF24 was the most promising candidate among 12 compounds against IPF. EF24 treatment significantly reduced senescence biomarkers in bleomycin-induced senescent AECs, including SA-ß-Gal, PAI-1, P21, and the senescence-associated secretory phenotype (SASP). EF24 also effectively inhibited fibroblast activation which was induced by senescent AECs or TGF-ß. We revealed that PTEN activation was integral for EF24 to inhibit AECs senescence by suppressing the AKT/mTOR/NF-κB signaling pathway. Additionally, EF24 improved mitochondrial dysfunction through induction of mitophagy. Furthermore, EF24 administration significantly reduced the senescent phenotype induced by bleomycin in the lung tissues of mice. Notably, EF24 mitigates fibrosis and promotes overall health benefits in both the acute and chronic phases of IPF, suggesting its therapeutic potential in IPF treatment. CONCLUSION: These findings collectively highlight EF24 as a new and effective therapeutic agent against IPF by inhibiting senescence in AECs.


Assuntos
Células Epiteliais Alveolares , Bleomicina , Senescência Celular , Fibrose Pulmonar Idiopática , Camundongos Endogâmicos C57BL , PTEN Fosfo-Hidrolase , Fibrose Pulmonar Idiopática/tratamento farmacológico , Animais , Senescência Celular/efeitos dos fármacos , Humanos , PTEN Fosfo-Hidrolase/metabolismo , Camundongos , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Curcumina/farmacologia , Curcumina/análogos & derivados , Células A549 , Masculino , Compostos de Benzilideno/farmacologia , Transdução de Sinais/efeitos dos fármacos , Piperidonas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo
3.
Aging Dis ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38739931

RESUMO

Diabetic foot ulcers (DFUs) are a prevalent and profoundly debilitating complication that afflicts individuals with diabetes mellitus (DM). These ulcers are associated with substantial morbidity, recurrence rates, disability, and mortality, imposing substantial economic, psychological, and medical burdens. Timely detection and intervention can mitigate the morbidity and disparities linked to DFU. Nevertheless, current therapeutic approaches for DFU continue to grapple with multifaceted limitations. A growing body of evidence emphasizes the crucial role of cellular senescence in the pathogenesis of chronic wounds. Interventions that try to delay cellular senescence, eliminate senescent cells (SnCs), or suppress the senescence-associated secretory phenotype (SASP) have shown promise for helping chronic wounds to heal. In this context, targeting cellular senescence emerges as a novel therapeutic strategy for DFU. In this comprehensive review, we look at the pathology and treatment of DFU in a systematic way. We also explain the growing importance of investigating SnCs in DFU and highlight the great potential of senotherapeutics that target SnCs in DFU treatment. The development of efficacious and safe senotherapeutics represents a pioneering therapeutic approach aimed at enhancing the quality of life for individuals affected by DFU.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA