Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(20): 24595-24605, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37161308

RESUMO

The field-induced-phase transition in (Na1/2Bi1/2)TiO3-based lead-free piezoceramics can be facilitated in the ⟨001⟩-crystallographic orientation, and the templated grain growth is an effective method to align polycrystalline ceramics along with specific directions. However, due to the low texturing degree and undesirable composite effect of the added templates, the textured ceramics using the templated grain growth (TGG) method usually require a higher driving field to trigger the phase transition instead. Here, ⟨001⟩-textured (Na0.5Bi0.5)0.935Ba0.065Ti0.978(Fe0.5Nb0.5)0.022O3 ceramics are prepared through a liquid-phase-assisted TGG process at a low sintering temperature (1000 °C), in which the NaNbO3 (NN) templates induce a strong crystallographic anisotropic structure (a high Lotgering factor of 95%) while dissolving into oriented grains. The dissolution of templates acts as a composition doping and contributes to reducing the driving electric field as proven by the phase-field simulation analysis. Furthermore, electrical and structural characterizations reveal that an increased ionic disorder occurs in the textured ceramic, causing highly dynamic polar nanoregions and a larger reversible phase transition. Thanks to the appropriate structure/composition control, the textured ceramic achieves a large d33* value of 907 pm/V at 40 kV/cm. The high-performance lead-free ceramic under low driving electric field benefits the development of multilayer piezoelectric actuators.

2.
Sci Rep ; 11(1): 1459, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446765

RESUMO

A bio -renewable polyisoprene obtained from Hevea Brasiliensis was used to produce functionalised carbon composite foam as an adsorbent for heavy metal ions. Functionalised carbon materials (C-SO3H, C-COOH, or C-NH2) derived from coconut shell waste were prepared via a hydrothermal treatment. Scanning electron microscopy images showed that the functionalised carbon particles had spherical shapes with rough surfaces. X-ray photoelectron spectroscopy confirmed that the functional groups were successfully functionalised over the carbon surface. The foaming process allowed for the addition of carbon (up to seven parts per hundred of rubber) to the high ammonia natural rubber latex. The composite foams had open pore structures with good dispersion of the functionalised carbon. The foam performance on copper ion adsorption has been investigated with regard to their functional group and adsorption conditions. The carbon foams achieved maximum Cu(II) adsorption at 56.5 [Formula: see text] for C-SO3H, 55.7 [Formula: see text] for C-COOH, and 41.9 [Formula: see text] for C-NH2, and the adsorption behaviour followed a pseudo-second order kinetics model.

3.
RSC Adv ; 11(16): 9327-9335, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35423448

RESUMO

A cross-linked sulfonated polyether ether ketone (C-SPEEK) was incorporated with MXene/potassium titanate nanowire (MKT-NW) as a filler and applied as a proton exchange membrane for photocatalytic water splitting. The prepared hybrid composite PEM had proton conductivity of 0.0097 S cm-1 at room temperature with an ion exchange capacity of 1.88 meq g-1. The hybrid composite proton exchange membrane is a reactive membrane which was able to generate hydrogen gas under UV light irradiation. The efficiency of hydrogen gas production was 0.185066 µmol within 5 h for 12% wt of MKT-NW loading. The results indicated that the MKT-NW/C-SPEEK membrane is a promising candidate for ion exchange with hydrogen gas evolution in photocatalytic water splitting and could be applied as a renewable source of energy to use in various fields of applications.

4.
ACS Omega ; 5(46): 29678-29687, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33251403

RESUMO

We herein report the functionalization of plant oil with norbornene (NB) and subsequent polymerization to prepare biobased thermoset films and biobased binders for silicon/mesocarbon microbead (MCMB) composite electrodes for use in lithium-ion batteries. A series of NB-functionalized plant oils were prepared as biobased thermoset films via ring-opening metathesis polymerization (ROMP) in the presence of a second-generation Grubbs catalyst with tunable thermomechanical properties. Increasing the catalyst loading and cross-linking agent increased cross-link density, storage modulus (E'), and glass transition temperature (T g), while the numbers of unreacted or oligomeric components in the films were reduced. High number of NB rings per triglyceride in the plant oil encouraged monomer incorporation to form a polymer network, therefore accounting for the high T g and E' values. Furthermore, the NB-functionalized plant oil and 2,5-norbornadiene (NBD) were copolymerized as bioderived binders for silicone/MCMB composite electrodes of lithium-ion batteries via ROMP during electrode preparation. Cell performance investigation showed that the silicone/MCMB composite electrode bearing the NBD-cross-linked NB-functionalized plant oil binder exhibited a higher C-rate and cycle-life performance than that using a conventional poly(vinylidene fluoride) (PVDF) binder. Finally, the electrode based on the bioderived binder exhibited a high specific charge capacity of 620 mA h g-1 at 0.5 C.

5.
Waste Manag ; 105: 492-500, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32143145

RESUMO

Sequential potassium hydroxide (KOH)-phosphoric acid (H3PO4) activation was applied to biomass waste to fabricate activated carbon microspheres (mCMs) with a controllable porous structure. Carbon microspheres (CMs) were first synthesized from xylose using a bottom-up approach of hydrothermal carbonization. Sequential KOH and H3PO4 activation was applied to the CMs in a KOH-carbon solid reaction. This created pores, which were further enlarged by adsorption of H3PO4. The KOH:carbon (C) and H3PO4:C molar ratios, and the H3PO4 heating rate and activation time, were varied to investigate the effect on average pore size and pore distribution. A uniform porous structure was formed without destruction of the spherical shape, and an almost 700-fold increase in surface area was obtained over the non-activated CMs. Following activation with H3PO4, phosphorous groups were found to be present at the surface of the carbon microspheres. The mCM was tested as a supercapacitor electrode and was shown to have a maximum specific capacitance of up to 277F g-1. A Ragone plot showed the maximum power density to be 173.88 W Kg-1. This increased specific capacitance was attributed to the increase in surface area and the presence of phosphorous-containing acid sites on the material surface.


Assuntos
Xilose , Biomassa , Capacitância Elétrica , Microesferas , Porosidade
6.
RSC Adv ; 10(4): 2067-2072, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35494600

RESUMO

The selectivity and activity of a nickel catalyst for the hydrogenation of carbon dioxide to form methane at low temperatures could be enhanced by mesoporous Al2O3-CeO2 synthesized through a one-pot sol-gel method. The performances of the as-prepared Ni/Al2O3-CeO2 catalysts exceeded those of their single Al2O3 counterpart giving a conversion of 78% carbon dioxide with 100% selectivity for methane during 100 h testing, without any deactivation, at the low temperature of 320 °C. The influence of CeO2 doping on the structure of the catalysts, the interactions between the mesoporous support and nickel species, and the reduction behaviors of Ni2+ ions were investigated in detail. In this work, the addition of CeO2 to the composites increased the oxygen vacancies and active metallic nickel sites, and also decreased the size of the nickel particles, thus improving the low temperature catalytic activity and selectivity significantly.

7.
ACS Appl Mater Interfaces ; 12(1): 1-37, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31746587

RESUMO

Recent developments in various technologies, such as hybrid electric vehicles and pulsed power systems, have challenged researchers to discover affordable, compact, and super-functioning electric energy storage devices. Among the existing energy storage devices, polymer nanocomposite film capacitors are a preferred choice due to their high power density, fast charge and discharge speed, high operation voltage, and long service lifetime. In the past several years, they have been extensively researched worldwide, with 0D, 1D, and 2D nanofillers being incorporated into various polymer matrixes. However, 1D nanofillers appeared to be the most effective in producing large dipole moments, which leads to a considerably enhanced dielectric permittivity and energy density of the nanocomposite. As such, this Review focuses on recent advances in polymer matrix nanocomposites using various types of 1D nanofillers, i.e., linear, ferroelectric, paraelectric, and relaxor-ferroelectric for energy storage applications. Correspondingly, the latest developments in the nanocomposite dielectrics with highly oriented, surface-coated, and surface-decorated 1D nanofillers are presented. Special attention has been paid to identifying the underlying mechanisms of maximizing dielectric displacement, increasing dielectric breakdown strength, and enhancing the energy density. This Review also presents some suggestions for future research in low-loss, high energy storage devices.

8.
RSC Adv ; 9(18): 10245-10252, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35520893

RESUMO

Synthesis of new polyesters by acyclic diene metathesis (ADMET) polymerization of α,ω-diene, 4-allyl-2-methoxyphenyl 10-undecenoate (M1), prepared from bio-renewable eugenol and castor oil (undecenoate), have been demonstrated. Ruthenium-carbene (called second generation Grubbs) catalyst afforded polymers with unimodal molecular weight distributions (M n = 12 700, M w/M n = 1.85). The polymerization in the presence of a triarm cross-linker, 5-formylbenzene-1,2,3-triyl tris(undec-10-enoate), also afforded polymers with certain uniform network structures.

9.
Carbohydr Polym ; 190: 184-189, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29628236

RESUMO

Nanocellulose sponge was fabricated by a facile method: freeze-drying of nanocellulose aqueous suspension to sponge state, following by hydrophobic treatment with stearoyl chloride at 50 °C for 1 h. The obtained nanocellulose sponge showed superhydrophobicity (160° of water contact angle) and superoleophilicity with high protection from water but selective absorption of oil. Its absorption capacities for various kinds of oil and non-polar liquids were 25-55 times higher than its dry weight and exhibited excellent selectivity for absorbing of oil which spilled on the surface of water or underwater with high separation efficiency. This superhydrophobic nanocellulose sponge can be easily recovered by simple squeezing and reused at least 10 cycles with remained high separation efficiency. It is expected that such a biodegradable nanocellulose sponge can be applied to solve the oil spill accident and treat the oily wastewater from households and industries.

10.
ACS Omega ; 3(9): 11041-11049, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31459214

RESUMO

Cross-metathesis of unsaturated fatty acid methyl esters (methyl oleate (MO), methyl petroselinate (MP), and methyl erucate (ME), obtained from vegetable oils) with eugenol (obtained from clove oil) proceeded under green, mild conditions (in 2-propanol or ethanol at 50 °C) in the presence of a ruthenium-carbene catalyst (called a second-generation Grubbs catalyst). These metathesis reactions proceeded with both high conversion (>90% of MO, MP) and selectivity (>98%) even with low catalyst loading (0.1 mol % Ru).

11.
Carbohydr Polym ; 153: 266-274, 2016 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-27561496

RESUMO

Hydrophobic nanocellulose-silica film was successfully prepared by a facile one-pot method using tetraethoxysilane (TEOS) and dodecyl triethoxylsilane (DTES). Morphological characterization of the hydrophobic nanocellulose-silica (NC-SiO2-DTES) film showed well self-assembled DTES modified silica spherical nanoparticles with the particle sizes in the range of 88-126nm over the nanocellulose film. The hydrophobicity of the NC-SiO2-DTES film was achieved owing to the improvement of roughness of the nanocellulose film by coating dodecyl- terminated silica nanoparticles. An increase in DTES loading amount and reaction time increased the hydrophobicity of the film, and the optimum condition for NC-SiO2-DTES film preparation was achieved at DTES/TEOS molar ratio of 2.0 for 8h reaction time. Besides, the NC-SiO2-DTES film performed superoleophilic property with octane and hexadecane contact angles of 0°. It also showed an excellent hydrophobic property over all pH values ranged from 1 to 14.

12.
Waste Manag ; 52: 367-74, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27053375

RESUMO

The application of an environmentally benign sulfonated carbon microsphere catalyst for biodiesel production from waste cooking oil was investigated. This catalyst was prepared by the sequential hydrothermal carbonization and sulfonation of xylose. The morphology, surface area, and acid properties were analyzed. The surface area and acidity of the catalyst were 86m(2)/g and 1.38mmol/g, respectively. In addition, the presence of sulfonic acid on the carbon surface was confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The catalytic activity was tested for biodiesel production from waste cooking oil via a two-step reaction to overcome reaction equilibrium. The highest biodiesel yield (89.6%) was obtained at a reaction temperature of 110°C, duration time of 4h, and catalyst loading of 10wt% under elevated pressure 2.3bar and 1.4bar for first and second step, respectively. The reusability of the catalyst was investigated and showed that the biodiesel yield decreased by 9% with each cycle; however, this catalyst is still of interest because it is an example of green chemistry, is nontoxic, and makes use of xylose waste.


Assuntos
Biocombustíveis , Culinária , Química Verde/métodos , Óleos de Plantas/química , Reciclagem/métodos , Resíduos , Espectroscopia Fotoeletrônica , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
13.
Waste Manag ; 28(11): 2415-21, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18314324

RESUMO

The corrosion from pyrolysis of PVC in plastic waste was reduced by copyrolysis of PVC with cattle manure. The optimization of pyrolysis conditions between PVC and cattle manure was studied via a statistical method, the Box-Behnken model. The pyrolysis reaction was operated in a tubular reactor. Heating rate, reaction temperature and the PVC:cattle manure ratio were optimized in the range of 1-5 degrees C/min, 250-450 degrees C and the ratio of 1:1-1:5, respectively. The suitable conditions which provided the highest HCl reduction efficiency were the lowest heating rate of 1 degrees C/min, the highest reaction temperature of 450 degrees C, and the PVC:cattle manure ratio of 1:5, with reliability of more than 90%. The copyrolysis of the mixture of PVC-containing plastic and cattle manure was operated at optimized conditions and the synergistic effect was studied on product yields. The presence of manure decreased the oil yield by about 17%. The distillation fractions of oil at various boiling points from both the presence and absence of manure were comparable. The BTX concentration decreased rapidly when manure was present and the chlorinated hydrocarbon was reduced by 45%. However, the octane number of the gasoline fraction was not affected by manure and was in the range of 99-100.


Assuntos
Conservação dos Recursos Naturais/métodos , Esterco , Plásticos , Eliminação de Resíduos/métodos , Animais , Reatores Biológicos , Bovinos , Hidrocarbonetos Clorados/análise , Ácido Clorídrico/análise , Espectroscopia de Ressonância Magnética , Tailândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...