Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 12: 663831, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489877

RESUMO

Staphylococci producing exfoliative toxins are the causative agents of staphylococcal scalded skin syndrome (SSSS). Exfoliative toxin A (ETA) is encoded by eta, which is harbored on a temperate bacteriophage ΦETA. A recent increase in the incidence of SSSS in North America has been observed; yet it is largely unknown whether this is the result of host range expansion of ΦETA or migration and emergence of established lineages. Here, we detail an outbreak investigation of SSSS in a neonatal intensive care unit, for which we applied whole-genome sequencing (WGS) and phylogenetic analysis of Staphylococcus aureus isolates collected from cases and screening of healthcare workers. We identified the causative strain as a methicillin-susceptible S. aureus (MSSA) sequence type 582 (ST582) possessing ΦETA. To then elucidate the global distribution of ΦETA among staphylococci, we used a recently developed tool to query extant bacterial WGS data for biosamples containing eta, which yielded 436 genomes collected between 1994 and 2019 from 32 countries. Applying population genomic analysis, we resolved the global distribution of S. aureus with lysogenized ΦETA and assessed antibiotic resistance determinants as well as the diversity of ΦETA. The population is highly structured with eight dominant sequence clusters (SCs) that generally aligned with S. aureus ST clonal complexes. The most prevalent STs included ST109 (24.3%), ST15 (13.1%), ST121 (10.1%), and ST582 (7.1%). Among strains with available data, there was an even distribution of isolates from carriage and disease. Only the SC containing ST121 had significantly more isolates collected from disease (69%, n = 46) than carriage (31%, n = 21). Further, we identified 10.6% (46/436) of strains as methicillin-resistant S. aureus (MRSA) based on the presence of mecA and the SCCmec element. Assessment of ΦETA diversity based on nucleotide identity revealed 27 phylogroups, and prophage gene content further resolved 62 clusters. ΦETA was relatively stable within lineages, yet prophage variation is geographically structured. This suggests that the reported increase in incidence is associated with migration and expansion of existing lineages, not the movement of ΦETA to new genomic backgrounds. This revised global view reveals that ΦETA is diverse and is widely distributed on multiple genomic backgrounds whose distribution varies geographically.

2.
Arch Intern Med ; 166(12): 1289-94, 2006 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-16801511

RESUMO

BACKGROUND: Primary health care-associated bloodstream infections (PHA-BSIs) affect as many as 350 000 patients in the United States annually. Whereas gram-negative organisms were the leading cause before the 1970s, gram-positive organisms have been the predominant microbial isolates since then. METHODS: We identified all PHA-BSIs among adult inpatients in a 625-bed quaternary care hospital from January 1, 1996, through December 31, 2003, and evaluated trends in the microbial etiology, geographic distribution within the institution, and antimicrobial susceptibilities. RESULTS: A total of 3662 PHA-BSIs caused by 4349 bacterial and fungal isolates were identified. From 1999 to 2003, the proportion of PHA-BSIs due to gram-negative organisms increased from 15.9% to 24.1% (P<.001 for trend). This trend was not significantly different across various units of the hospital, and no specific gram-negative species contributed disproportionately to the increase. With few exceptions, there were no significant increases in antimicrobial resistance. The increase in gram-negative organisms was accompanied by a decline in the proportion of PHA-BSIs from coagulase-negative staphylococci (from 33.5% in 1999 to 29.9% in 2003, P = .007) and from Staphylococcus aureus (from 18.8% in 1999 to 11.8% in 2003, P = .004). The proportion of PHA-BSIs from Candida species almost doubled from 5.8% in 1999 to 11.3% in 2003 (P = .002). CONCLUSIONS: To our knowledge, this is the first US study to report a reemergence of gram-negative organisms as a cause of PHA-BSIs. This finding does not seem to be related to changes in specific gram-negative organisms or to antimicrobial resistance. If this trend continues, it will have important implications for the management of bloodstream infections.


Assuntos
Bacteriemia/epidemiologia , Infecção Hospitalar/epidemiologia , Infecções por Bactérias Gram-Negativas/epidemiologia , Hospitais Universitários/estatística & dados numéricos , Atenção Primária à Saúde , Adulto , Bacteriemia/microbiologia , Infecção Hospitalar/microbiologia , Bactérias Gram-Negativas/isolamento & purificação , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Incidência , Pennsylvania/epidemiologia , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...