Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 11(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35159485

RESUMO

Effective biopreservation measures are needed to control the growth of postprocess Listeria monocytogenes contamination in fresh whey cheeses stored under refrigeration. This study assessed growth and biocontrol of inoculated (3 log10 CFU/g) L. monocytogenes in vacuum-packed, fresh (1-day-old) or 'aged' (15-day-old) Anthotyros whey cheeses, without or with 5% of a crude enterocin A-B-P extract (CEntE), during storage at 4 °C. Regardless of CEntE addition, the pathogen increased by an average of 2.0 log10 CFU/g in fresh cheeses on day 15. Gram-negative spoilage bacteria also increased by an average of 2.5 log10 CFU/g. However, from day 15 to the sell-by date (days 35-40), L. monocytogenes growth ceased, and progressively, the populations of the pathogen declined in most cheeses. This was due to an unmonitored, batch-dependent natural acidification by spoilage lactic acid bacteria, predominantly Leuconostoc mesenteroides, which reduced the cheese pH to 5.5, and finally to ≤5.0. The pH reductions and associated declines in pathogen viability were greater in the CEntE-treated samples within each batch. L. monocytogenes failed to grow in cheeses previously 'aged' in retail for 15 days. Overall, high population levels (>7.5 log10 CFU/g) of psychrotrophic Enterobacteriaceae, particularly Hafnia alvei, were associated with an extended growth and increased survival of L. monocytogenes during storage.

2.
Foods ; 10(12)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34945498

RESUMO

Although fresh whey cheeses are prone to rapid deterioration, mainly by psychrotrophic Gram-negative bacteria and lactic acid bacteria (LAB), data on the specific spoilage species in traditional Greek whey cheeses are scarce. Therefore, this study quantified growth and characterized the primary spoilage bacteria in fresh Anthotyros whey cheeses stored at 4 °C in a vacuum for 40 days, without or with an added 5% (v/w) of an enterocin A-B-P crude extract (CEntE). Psychrotrophic Pseudomonas spp., Aeromonas spp., Hafnia spp. and Serratia spp. grew faster than LAB during early storage. However, LAB outgrew the Gram-negative bacteria and prevailed by mid to late storage in all cheese batches, causing a strong or milder batch-dependent natural acidification. Two major non-slime-producing and two minor biotypes of Leuconostoc-like bacteria, all identified as Leuconostoc mesenteroides by 16S rRNA sequencing, dominated the LAB association (76.7%), which also included four subdominant Carnobacterium maltaromaticum biotypes (10.9%), one Leuconostoc lactis biotype (3.3%) and few Lactococcus (1.6%), mesophilic Lactobacillus (0.8%) and Enterococcus (0.8%). Growth and distribution of LAB and Gram-negative species were strongly batch-dependent and plant-dependent. The CEntE neither retarded growth nor altered the whey cheese spoilage association but enhanced LAB growth and the declines of Gram-negative bacteria by late storage.

3.
Food Microbiol ; 99: 103822, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34119107

RESUMO

This study assessed the evolution of spoilage microbiota in association with the changes in pH and concentrations of lactic and acetic acids in retail oxygen-free modified atmosphere (30:70 CO2/N2) packages (MAP) of minced free-range chicken meat during storage at 4 °C for 10 days. MAP retarded growth of spoilage lactic acid bacteria (LAB) below 6.5 log cfu/g and fully suppressed growth of pseudomonads, enterobacteria, enterococci, staphylococci and yeasts. Two distinct Latilactobacillus sakei strain biotypes were predominant and Leuconostoc carnosum, Carnobacterium divergens, Latilactobacillus fuchuensis and Weissella koreensis were subdominant at spoilage. The chicken meat pH ranged from 5.8 to 6.1. l-lactate (832 mg/100 g on day-0) decreased slightly on day-7. d-lactate remained constantly below 20 mg/100 g, whereas acetate (0-59 mg/100 g) increased 5-fold on day-7. All MAP samples developed off-odors on day-7 and a strong 'blown-pack' sulfur-type of spoilage on day-10. However, neither the predominant Lb. sakei nor other LAB or gram-negative isolates formed H2S in vitro, except for C. divergens.


Assuntos
Bactérias/isolamento & purificação , Embalagem de Alimentos/métodos , Carne/microbiologia , Microbiota , Animais , Atmosfera/análise , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Galinhas/microbiologia , Contagem de Colônia Microbiana , Contaminação de Alimentos/análise , Embalagem de Alimentos/instrumentação , Armazenamento de Alimentos
4.
Microorganisms ; 9(4)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33917761

RESUMO

Autochthonous single (Ent+) or multiple (m-Ent+) enterocin-producing strains of dairy enterococci show promise for use as bioprotective adjunct cultures in traditional cheese technologies, provided they possess no pathogenic traits. This study evaluated safety, decarboxylase activity, and enzymatic (API ZYM) activity profiles of nine Ent+ or m-Ent+ Greek cheese isolates previously assigned to four distinct E. faecium (represented by the isolates KE64 (entA), GL31 (entA), KE82 (entA-entB-entP) and KE77 (entA-entB-entP-bac31)) and two E. durans (represented by the isolates KE100 (entP) and KE108 (entP-bac31-cyl)) strain genotypes. No strain was ß-hemolytic or harbored vanA and vanB or the virulence genes agg, ace, espA, IS16, hyl, or gelE. All strains were of moderate to high sensitivity to ampicillin, ciprofloxacin, chloramphenicol, erythromycin, gentamicin, penicillin, tetracycline, and vancomycin, except for the E. faecium KE64 and KE82 strains, which were resistant to erythromycin and penicillin. All cheese strains showed moderate to strong esterase-lipase and aminopeptidase activities and formed tyramine, but none formed histamine in vitro. In conclusion, all Ent+ or m-Ent+ strain genotypes of the E. faecium/durans group, except for the cyl-positive E. durans KE108, were safe for use as adjunct cultures in traditional Greek cheeses. Further in situ biotechnological evaluations of the strains in real cheese-making trials are required.

5.
J Food Prot ; 84(1): 87-98, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33411927

RESUMO

ABSTRACT: The ability of the enterocin A-B-P-producing Enterococcus faecium KE82 adjunct strain to inactivate Listeria monocytogenes during protected designation of origin Galotyri processing was evaluated. Three trials were conducted with artisan cheeses made from traditionally "boiled" (85°C) ewe's milk. The milk was cooled at 42°C and divided in two treatments. A1 milk was inoculated with Streptococcus thermophilus ST1 and Lactococcus lactis subsp. cremoris M78, and A2 was inoculated with the basic starter ST1+M78 plus KE82 (step 1). All milks were fermented at 20 to 22°C for 24 h (step 2), and the curds were drained at 12°C for 72 h (step 3) and then salted with 1.5 to 1.8% salt to obtain the fresh Galotyri cheeses (step 4). These fresh cheeses were then ripened at 4°C for 30 days (step 5). Because artificial listerial contamination in the dairy plant was prohibited, samples of A1 and A2 cheese milk (200 mL) or curd (200 g) were collected after steps 1 through 5, inoculated with L. monocytogenes 10 (3 to 4 log CFU/mL or g), incubated at 37, 22, 12, and 4°C for predefined periods, and analyzed for microbial levels and pH. L. monocytogenes levels declined in all cheese curd portions contaminated after steps 2 through 5 (pH 4.36 to 4.84) when stored at 4 or 12°C for 15 days. The final net reductions in Listeria populations were 2.00-, 1.07-, 0.54-, and 0.61-log greater in the A2 than in the A1 curd portions after steps 2, 3, 4, and 5, respectively. In step 1, conducted to simulate the whole cheese milk fermentation process, L. monocytogenes levels declined by 1.47 log CFU/mL more in the A2 than in the A1 milk portions after 72 h at 22°C; however, slight growth (0.6 log CFU/mL) occurred during the first 6 h at 37°C. E. faecium KE82 was compatible with the starter culture and enhanced inactivation of L. monocytogenes during all steps of Galotyri cheese processing. The antilisterial effects of the combined acid and enterocin were the weakest in the fermenting milks, the strongest in the unsalted fermented curds, and declined again in the salted fresh cheeses.


Assuntos
Queijo , Enterococcus faecium , Listeria monocytogenes , Animais , Bacteriocinas , Microbiologia de Alimentos , Lactococcus , Leite
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...