Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38559223

RESUMO

While monoclonal antibody-based targeted therapies have substantially improved progression-free survival in cancer patients, the variability in individual responses poses a significant challenge in patient care. Therefore, identifying cancer subtypes and their associated biomarkers is required for assigning effective treatment. In this study, we integrated genotype and pre-treatment tissue RNA-seq data and identified biomarkers causally associated with the overall survival (OS) of colorectal cancer (CRC) patients treated with either cetuximab or bevacizumab. We performed enrichment analysis for specific consensus molecular subtypes (CMS) of colorectal cancer and evaluated differential expression of identified genes using paired tumor and normal tissue from an external cohort. In addition, we replicated the causal effect of these genes on OS using validation cohort and assessed their association with the Cancer Genome Atlas Program data as an external cohort. One of the replicated findings was WDR62, whose overexpression shortened OS of patients treated with cetuximab. Enrichment of its over expression in CMS1 and low expression in CMS4 suggests that patients with CMS4 subtype may drive greater benefit from cetuximab. In summary, this study highlights the importance of integrating different omics data for identifying promising biomarkers specific to a treatment or a cancer subtype.

2.
Res Sq ; 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37645766

RESUMO

In a prospective study with records of heart failure (HF) incidence, we present metabolite profiling data from individuals without HF at baseline. We uncovered the interconnectivity of metabolites using data-driven and causal networks augmented with polygenic factors. Exploring the networks, we identified metabolite broadcasters, receivers, mediators, and subnetworks corresponding to functional classes of metabolites, and provided insights into the link between metabolomic architecture and regulation in health. We incorporated the network structure into the identification of metabolites associated with HF to control the effect of confounding metabolites. We identified metabolites associated with higher or lower risk of HF incidence, the associations that were not confounded by the other metabolites, such as glycine, ureidopropionic and glycocholic acids, and LPC 18:2. We revealed the underlying relationships of the findings. For example, asparagine directly influenced glycine, and both were inversely associated with HF. These two metabolites were influenced by polygenic factors and only essential amino acids which are not synthesized in the human body and come directly from the diet. Metabolites may play a critical role in linking genetic background and lifestyle factors to HF progression. Revealing the underlying connectivity of metabolites associated with HF strengthens the findings and facilitates a mechanistic understanding of HF progression.

3.
Hum Mol Genet ; 32(4): 696-707, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36255742

RESUMO

BACKGROUND: Asthma is a heterogeneous common respiratory disease that remains poorly understood. The established genetic associations fail to explain the high estimated heritability, and the prevalence of asthma differs between populations and geographic regions. Robust association analyses incorporating different genetic ancestries and whole-genome sequencing data may identify novel genetic associations. METHODS: We performed family-based genome-wide association analyses of childhood-onset asthma based on whole-genome sequencing (WGS) data for the 'The Genetic Epidemiology of Asthma in Costa Rica' study (GACRS) and the Childhood Asthma Management Program (CAMP). Based on parent-child trios with children diagnosed with asthma, we performed a single variant analysis using an additive and a recessive genetic model and a region-based association analysis of low-frequency and rare variants. RESULTS: Based on 1180 asthmatic trios (894 GACRS trios and 286 CAMP trios, a total of 3540 samples with WGS data), we identified three novel genetic loci associated with childhood-onset asthma: rs4832738 on 4p14 ($P=1.72\ast{10}^{-9}$, recessive model), rs1581479 on 8p22 ($P=1.47\ast{10}^{-8}$, additive model) and rs73367537 on 10q26 ($P=1.21\ast{10}^{-8}$, additive model in GACRS only). Integrative analyses suggested potential novel candidate genes underlying these associations: PGM2 on 4p14 and FGF20 on 8p22. CONCLUSION: Our family-based whole-genome sequencing analysis identified three novel genetic loci for childhood-onset asthma. Gene expression data and integrative analyses point to PGM2 on 4p14 and FGF20 on 8p22 as linked genes. Furthermore, region-based analyses suggest independent potential low-frequency/rare variant associations on 8p22. Follow-up analyses are needed to understand the functional mechanisms and generalizability of these associations.


Assuntos
Asma , Estudo de Associação Genômica Ampla , Humanos , Predisposição Genética para Doença , Asma/genética , Loci Gênicos , Sequenciamento Completo do Genoma , Polimorfismo de Nucleotídeo Único/genética , Fatores de Crescimento de Fibroblastos/genética
4.
Front Genet ; 13: 990486, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186433

RESUMO

The number of studies with information at multiple biological levels of granularity, such as genomics, proteomics, and metabolomics, is increasing each year, and a biomedical questaion is how to systematically integrate these data to discover new biological mechanisms that have the potential to elucidate the processes of health and disease. Causal frameworks, such as Mendelian randomization (MR), provide a foundation to begin integrating data for new biological discoveries. Despite the growing number of MR applications in a wide variety of biomedical studies, there are few approaches for the systematic analysis of omic data. The large number and diverse types of molecular components involved in complex diseases interact through complex networks, and classical MR approaches targeting individual components do not consider the underlying relationships. In contrast, causal network models established in the principles of MR offer significant improvements to the classical MR framework for understanding omic data. Integration of these mostly distinct branches of statistics is a recent development, and we here review the current progress. To set the stage for causal network models, we review some recent progress in the classical MR framework. We then explain how to transition from the classical MR framework to causal networks. We discuss the identification of causal networks and evaluate the underlying assumptions. We also introduce some tests for sensitivity analysis and stability assessment of causal networks. We then review practical details to perform real data analysis and identify causal networks and highlight some of the utility of causal networks. The utilities with validated novel findings reveal the full potential of causal networks as a systems approach that will become necessary to integrate large-scale omic data.

5.
BMC Genomics ; 20(1): 395, 2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31113383

RESUMO

BACKGROUND: Many genome-wide association studies have detected genomic regions associated with traits, yet understanding the functional causes of association often remains elusive. Utilizing systems approaches and focusing on intermediate molecular phenotypes might facilitate biologic understanding. RESULTS: The availability of exome sequencing of two populations of African-Americans and European-Americans from the Atherosclerosis Risk in Communities study allowed us to investigate the effects of annotated loss-of-function (LoF) mutations on 122 serum metabolites. To assess the findings, we built metabolomic causal networks for each population separately and utilized structural equation modeling. We then validated our findings with a set of independent samples. By use of methods based on concepts of Mendelian randomization of genetic variants, we showed that some of the affected metabolites are risk predictors in the causal pathway of disease. For example, LoF mutations in the gene KIAA1755 were identified to elevate the levels of eicosapentaenoate (p-value = 5E-14), an essential fatty acid clinically identified to increase essential hypertension. We showed that this gene is in the pathway to triglycerides, where both triglycerides and essential hypertension are risk factors of metabolomic disorder and heart attack. We also identified that the gene CLDN17, harboring loss-of-function mutations, had pleiotropic actions on metabolites from amino acid and lipid pathways. CONCLUSION: Using systems biology approaches for the analysis of metabolomics and genetic data, we integrated several biological processes, which lead to findings that may functionally connect genetic variants with complex diseases.


Assuntos
Pleiotropia Genética , Genoma Humano , Metaboloma/genética , Metabolômica , Mutação , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Negro ou Afro-Americano/genética , Algoritmos , Humanos , População Branca/genética
6.
Int Immunopharmacol ; 66: 330-335, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30521961

RESUMO

Evidence from various studies suggests that narcotics abuse may exert adverse immunomodulatory effects on immune responses. The aim of this research was to understand the effects of detoxification with methadone on the percentage of dendritic cells (DCs) and expression of its markers in heroin addicts. In this study, myeloid DCs (CD11c+) and plasmacytoid DCs (CD123+) were examined in two groups. These groups comprised of 20 healthy volunteers and 20 chronic heroin addicts, before and after detoxification with methadone. The percentages of myeloid DCs and plasmacytoid DCs were lower in addict subjects than in the control. The HLA-DR expression on DCs was significantly lower in addict subjects than in the control, whereas CD11c and CD123 expression in DCs subsets were increased in them. Most of these changes were modified after the methadone therapy. Dendritic cells are essential to the initiation of primary immune responses, therefore the disruption of their function can be one of the reasons for the increased prevalence of infections in heroin addicts. The methadone therapy can improve the imposed changes by heroin.


Assuntos
Células Dendríticas/efeitos dos fármacos , Antígenos HLA-DR/metabolismo , Dependência de Heroína/tratamento farmacológico , Metadona/uso terapêutico , Tratamento de Substituição de Opiáceos , Adulto , Antígeno CD11c/metabolismo , Separação Celular , Células Dendríticas/metabolismo , Regulação para Baixo/efeitos dos fármacos , Citometria de Fluxo , Humanos , Imunomodulação , Subunidade alfa de Receptor de Interleucina-3/metabolismo , Masculino , Adulto Jovem
8.
J Biomed Inform ; 63: 337-343, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27592308

RESUMO

Untargeted metabolomics, measurement of large numbers of metabolites irrespective of their chemical or biologic characteristics, has proven useful for identifying novel biomarkers of health and disease. Of particular importance is the analysis of networks of metabolites, as opposed to the level of an individual metabolite. The aim of this study is to achieve causal inference among serum metabolites in an observational setting. A metabolomics causal network is identified using the genome granularity directed acyclic graph (GDAG) algorithm where information across the genome in a deeper level of granularity is extracted to create strong instrumental variables and identify causal relationships among metabolites in an upper level of granularity. Information from 1,034,945 genetic variants distributed across the genome was used to identify a metabolomics causal network among 122 serum metabolites. We introduce individual properties within the network, such as strength of a metabolite. Based on these properties, hypothesized targets for intervention and prediction are identified. Four nodes corresponding to the metabolites leucine, arichidonoyl-glycerophosphocholine, N-acyelyalanine, and glutarylcarnitine had high impact on the entire network by virtue of having multiple arrows pointing out, which propagated long distances. Five modules, largely corresponding to functional metabolite categories (e.g. amino acids), were identified over the network and module boundaries were determined using directionality and causal effect sizes. Two families, each consists of a triangular motif identified in the network had essential roles in the network by virtue of influencing a large number of other nodes. We discuss causal effect measurement while confounders and mediators are identified graphically.


Assuntos
Algoritmos , Genoma , Metabolômica , Biomarcadores , Causalidade , Variação Genética , Humanos
9.
J Biomed Inform ; 60: 114-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26827624

RESUMO

Understanding causal relationships among large numbers of variables is a fundamental goal of biomedical sciences and can be facilitated by Directed Acyclic Graphs (DAGs) where directed edges between nodes represent the influence of components of the system on each other. In an observational setting, some of the directions are often unidentifiable because of Markov equivalency. Additional exogenous information, such as expert knowledge or genotype data can help establish directionality among the endogenous variables. In this study, we use the method of principle component analysis to extract information across the genome in order to generate a robust statistical causal network among phenotypes, the variables of primary interest. The method is applied to 590,020 SNP genotypes measured on 1596 individuals to generate the statistical causal network of 13 cardiovascular disease risk factor phenotypes. First, principal component analysis was used to capture information across the genome. The principal components were then used to identify a robust causal network structure, GDAG, among the phenotypes. Analyzing a robust causal network over risk factors reveals the flow of information in direct and alternative paths, as well as determining predictors and good targets for intervention. For example, the analysis identified BMI as influencing multiple other risk factor phenotypes and a good target for intervention to lower disease risk.


Assuntos
Doenças Cardiovasculares/genética , Genômica , Informática Médica , Modelos Estatísticos , Algoritmos , Genótipo , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...