Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Histochem Cell Biol ; 161(6): 507-519, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38597938

RESUMO

The unique properties of superparamagnetic iron oxide nanoparticles (SPIONs) enable their use as magnetic biosensors, targeted drug delivery, magnetothermia, magnetic resonance imaging, etc. Today, SPIONs are the only type of metal oxide nanoparticles approved for biomedical application. In this work, we analyzed the cellular response to the previously reported luminescent silica coated SPIONs of the two cell types: M-HeLa cells and primary motor neuron culture. Both internalization pathways and intracellular fate of SPIONs have been compared for these cell lines using fluorescence and transmission electron microscopy. We also applied a pharmacological approach to analyze the endocytosis pathways of SPIONs into the investigated cell lines. The penetration of SPIONs into M-HeLa cells is already noticeable within 30 s of incubation through both caveolin-dependent endocytosis and micropinocytosis. However, incubation for a longer time (1 h at least) is required for the internalization of SPIONs into motor neuron culture cells provided by dynamin-dependent endocytosis and macropinocytosis. The intracellular colocalization assay reveals that the lysosomal internalization pathway of SPIONs is also dependent on the cell type. The lysosomal pathway is much more pronounced for M-HeLa cells compared with motor neurons. The emphasized differences in cellular responses of the two cell lines open up new opportunities in the application of SPIONs in the diagnostics and therapy of cancer cells.


Assuntos
Endocitose , Lisossomos , Neurônios Motores , Dióxido de Silício , Dióxido de Silício/química , Dióxido de Silício/metabolismo , Lisossomos/metabolismo , Humanos , Neurônios Motores/metabolismo , Neurônios Motores/citologia , Células HeLa , Células Cultivadas , Nanopartículas de Magnetita/química , Animais , Nanopartículas Magnéticas de Óxido de Ferro/química
2.
Discov Nano ; 18(1): 133, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903946

RESUMO

The work presents core-shell nanoparticles (NPs) built from the novel Cu(I) complexes with cyclic P2N2-ligands (1,5-diaza-3,7-diphosphacyclooctanes) that can visualize their entry into cancer and normal cells using a luminescent signal and treat cells by self-enhancing generation of reactive oxygen species (ROS). Variation of P- and N-substituents in the series of P2N2-ligands allows structure optimization of the Cu(I) complexes for the formation of the luminescent NPs with high chemical stability. The non-covalent modification of the NPs with triblock copolymer F-127 provides their high colloidal stability, followed by efficient cell internalization of the NPs visualized by their blue (⁓450 nm) luminescence. The cytotoxic effects of the NPs toward the normal and some of cancer cells are significantly lower than those of the corresponding molecular complexes, which correlates with the chemical stability of the NPs in the solutions. The ability of the NPs to self-enhanced and H2O2-induced ROS generation is demonstrated in solutions and intracellular space by means of the standard electron spin resonance (ESR) and fluorescence techniques correspondingly. The anticancer specificity of the NPs toward HuTu 80 cancer cells and the apoptotic cell death pathway correlate with the intracellular level of ROS, which agrees well with the self-enhancing ROS generation of the NPs. The enhanced level of ROS revealed in HuTu 80 cells incubated with the NPs can be associated with the significant level of their mitochondrial localization.

3.
Molecules ; 28(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37894708

RESUMO

This research is based on the concept that mitochondria are a promising target for anticancer therapy, including thatassociated with the use of oxidative phosphorylation blockers (mitochondrial poisons). Liposomes based on L-α-phosphatidylcholine (PC) and cholesterol (Chol) modified with cationic surfactants with triphenylphosphonium (TPPB-n, where n = 10, 12, 14, and 16) and imidazolium (IA-n(OH), where n = 10, 12, 14, and 16) head groups were obtained. The physicochemical characteristics of liposomes at different surfactant/lipid molar ratios were determined by dynamic/electrophoretic light scattering, transmission electron microscopy, and spectrophotometry. The hydrodynamic diameter of all the systems was within 120 nm with a polydispersity index of no more than 0.24 even after 2 months of storage. It was shown that cationization of liposomes leads to an increase in the internalization of nanocontainers in pancreatic carcinoma (PANC-1) and duodenal adenocarcinoma (HuTu 80) cells compared with unmodified liposomes. Also, using confocal microscopy, it was shown that liposomes modified with TPPB-14 and IA-14(OH) statistically better colocalize with the mitochondria of tumor cells compared with unmodified ones. At the next stage, the mitochondrial poison rotenone (ROT) was loaded into cationic liposomes. It was shown that the optimal loading concentration of ROT is 0.1 mg/mL. The Korsmeyer-Peppas and Higuchi kinetic models were used to describe the release mechanism of ROT from liposomes in vitro. A significant reduction in the IC50 value for the modified liposomes compared with free ROT was shown and, importantly, a higher degree of selectivity for the HuTu 80 cell line compared with the normal cells (SI value is 307 and 113 for PC/Chol/TPPB-14/ROT and PC/Chol/IA-14(OH)/ROT, respectively) occurred. It was shown that the treatment of HuTu 80 cells with ROT-loaded cationic liposomal formulations leads to a dose-dependent decrease in the mitochondrial membrane potential.


Assuntos
Lipossomos , Rotenona , Rotenona/farmacologia , Mitocôndrias , Linhagem Celular , Fosfatidilcolinas , Tensoativos
4.
Cell Mol Neurobiol ; 43(8): 4157-4172, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37689594

RESUMO

TRPV1 represents a non-selective transient receptor potential cation channel found not only in sensory neurons, but also in motor nerve endings and in skeletal muscle fibers. However, the role of TRPV1 in the functioning of the neuromuscular junction has not yet been fully established. In this study, the Levator Auris Longus muscle preparations were used to assess the effect of pharmacological activation of TRPV1 channels on neuromuscular transmission. The presence of TRPV1 channels in the nerve terminal and in the muscle fiber was confirmed by immunohistochemistry. It was verified by electrophysiology that the TRPV1 channel agonist capsaicin inhibits the acetylcholine release, and this effect was completely absent after preliminary application of the TRPV1 channel blocker SB 366791. Nerve stimulation revealed an increase of amplitude of isometric tetanic contractions upon application of capsaicin which was also eliminated after preliminary application of SB 366791. Similar data were obtained during direct muscle stimulation. Thus, pharmacological activation of TRPV1 channels affects the functioning of both the pre- and postsynaptic compartment of the neuromuscular junction. A moderate decrease in the amount of acetylcholine released from the motor nerve allows to maintain a reserve pool of the mediator to ensure a longer signal transmission process, and an increase in the force of muscle contraction, in its turn, also implies more effective physiological muscle activity in response to prolonged stimulation. This assumption is supported by the fact that when muscle was indirect stimulated with a fatigue protocol, muscle fatigue was attenuated in the presence of capsaicin.


Assuntos
Acetilcolina , Capsaicina , Camundongos , Animais , Capsaicina/farmacologia , Acetilcolina/farmacologia , Junção Neuromuscular , Músculo Esquelético , Canais de Cátion TRPV
5.
Int J Mol Sci ; 24(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37445673

RESUMO

Liposomes modified with tetradecyltriphenylphosphonium bromide with dual loading of α-tocopherol and donepezil hydrochloride were successfully designed for intranasal administration. Physicochemical characteristics of cationic liposomes such as the hydrodynamic diameter, zeta potential, and polydispersity index were within the range from 105 to 115 nm, from +10 to +23 mV, and from 0.1 to 0.2, respectively. In vitro release curves of donepezil hydrochloride were analyzed using the Korsmeyer-Peppas, Higuchi, First-Order, and Zero-Order kinetic models. Nanocontainers modified with cationic surfactant statistically better penetrate into the mitochondria of rat motoneurons. Imaging of rat brain slices revealed the penetration of nanocarriers into the brain. Experiments on transgenic mice with an Alzheimer's disease model (APP/PS1) demonstrated that the intranasal administration of liposomes within 21 days resulted in enhanced learning abilities and a reduction in the formation rate of Aß plaques in the entorhinal cortex and hippocampus of the brain.


Assuntos
Doença de Alzheimer , Camundongos , Ratos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Lipossomos/metabolismo , Donepezila , Encéfalo/metabolismo , Camundongos Transgênicos , Mitocôndrias , Modelos Animais de Doenças
6.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-37259349

RESUMO

Magnetic nanoparticles (MNPs) have recently begun to be actively used in biomedicine applications, for example, for targeted drug delivery, in tissue engineering, and in magnetic resonance imaging. The study of the magnetic field effect on MNPs internalized into living cells is of particular importance since it allows a non-invasive influence on cellular activity. There is data stating the possibility to manipulate and control individual MNPs utilizing the local magnetic field gradient created by electromagnetic needles (EN). The present work aimed to demonstrate the methodological and technical approach for manipulating the local magnetic field gradient, generated by EN, novel luminescent MNPs internalized in HeLa cancer cells. The controlling of the magnetic field intensity and estimation of the attractive force of EN was demonstrated. Both designs of EN and their main characteristics are also described. Depending on the distance and applied voltage, the attractive force ENs ranged from 0.056 ± 0.002 to 37.85 ± 3.40 pN. As a practical application of the presented, the evaluation of viscous properties of the HeLa cell's cytoplasm, based on the measurement of the movement rate of MNPs inside cells under impact of a known magnetic force, was carried out; the viscosity was 1.45 ± 0.04 Pa·s.

7.
Int J Mol Sci ; 24(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37240370

RESUMO

Amyotrophic lateral sclerosis (ALS) is manifested as skeletal muscle denervation, loss of motor neurons and finally severe respiratory failure. Mutations of RNA-binding protein FUS are one of the common genetic reasons of ALS accompanied by a 'dying back' type of degeneration. Using fluorescent approaches and microelectrode recordings, the early structural and functional alterations in diaphragm neuromuscular junctions (NMJs) were studied in mutant FUS mice at the pre-onset stage. Lipid peroxidation and decreased staining with a lipid raft marker were found in the mutant mice. Despite the preservation of the end-plate structure, immunolabeling revealed an increase in levels of presynaptic proteins, SNAP-25 and synapsin 1. The latter can restrain Ca2+-dependent synaptic vesicle mobilization. Indeed, neurotransmitter release upon intense nerve stimulation and its recovery after tetanus and compensatory synaptic vesicle endocytosis were markedly depressed in FUS mice. There was a trend to attenuation of axonal [Ca2+]in increase upon nerve stimulation at 20 Hz. However, no changes in neurotransmitter release and the intraterminal Ca2+ transient in response to low frequency stimulation or in quantal content and the synchrony of neurotransmitter release at low levels of external Ca2+ were detected. At a later stage, shrinking and fragmentation of end plates together with a decrease in presynaptic protein expression and disturbance of the neurotransmitter release timing occurred. Overall, suppression of synaptic vesicle exo-endocytosis upon intense activity probably due to alterations in membrane properties, synapsin 1 levels and Ca2+ kinetics could be an early sign of nascent NMJ pathology, which leads to neuromuscular contact disorganization.


Assuntos
Esclerose Lateral Amiotrófica , Animais , Camundongos , Esclerose Lateral Amiotrófica/genética , Proteína FUS de Ligação a RNA/genética , Sinapsinas/genética , Sinapsinas/metabolismo , Junção Neuromuscular/metabolismo , Neurotransmissores/metabolismo
8.
Nanomedicine ; 49: 102665, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36822334

RESUMO

The silica nanoparticles (SNs) co-doped with paramagnetic ([Mn(HL)]n-,) and luminescent ([Ru(dipy)3]2+) complexes are represented. The specific distribution of [Mn(HL)]n- within the SNs allows to achieve about ten-fold enhancing in magnetic relaxivities in comparison with those of [Mn(HL)]n- in solutions. The leaching of [Mn(HL)]n- from the shell can be minimized through the co-doping of [Ru(dipy)3]2+ into the core of the SNs. The co-doped SNs exhibit colloid stability in aqueous solutions, including those modeling a blood serum. The surface of the co-doped SNs was also decorated by amino- and carboxy-groups. The cytotoxicity, hemoagglutination and hemolytic activities of the co-doped SNs are on the levels convenient for "in vivo" studies, although the amino-decorated SNs cause more noticeable agglutination and suppression of cell viability. The co-doped SNs being intravenously injected into mice allows to reveal their biodistribution in both ex vivo and in vivo conditions through confocal microscopy and magnetic resonance imaging correspondingly.


Assuntos
Nanopartículas , Dióxido de Silício , Animais , Camundongos , Distribuição Tecidual , Meios de Contraste , Imageamento por Ressonância Magnética/métodos
9.
Nanomaterials (Basel) ; 12(18)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36145017

RESUMO

The present work introduces a simple, electrostatically driven approach to engineered nanomaterial built from the highly cytotoxic [Au2L2]2+ complex (Au2, L = 1,5-bis(p-tolyl)-3,7-bis(pyridine-2-yl)-1,5-diaza-3,7-diphosphacyclooctane (PNNP) ligand) and the pH-sensitive red-emitting [{Re6Q8}(OH)6]4- (Re6-Q, Q = S2- or Se2-) cluster units. The protonation/deprotonation of the Re6-Q unit is a prerequisite for the pH-triggered assembly of Au2 and Re6-Q into Au2Re6-Q colloids, exhibiting disassembly in acidic (pH = 4.5) conditions modeling a lysosomal environment. The counter-ion effect of polyethylenimine causes the release of Re6-Q units from the colloids, while the binding with lysozyme restricts their protonation in acidified conditions. The enhanced luminescence response of Re6-S on the disassembly of Au2Re6-S colloids in the lysosomal environment allows us to determine their high lysosomal localization extent through the colocalization assay, while the low luminescence of Re6-Se units in the same conditions allows us to reveal the rapture of the lysosomal membrane through the use of the Acridine Orange assay. The lysosomal pathway of the colloids, followed by their endo/lysosomal escape, correlates with their cytotoxicity being on the same level as that of Au2 complexes, but the contribution of the apoptotic pathway differentiates the cytotoxic effect of the colloids from that of the Au2 complex arisen from the necrotic processes.

10.
Biomedicines ; 10(8)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35892671

RESUMO

For effective transmission of excitation in neuromuscular junctions, the postsynaptic response amplitude must exceed a critical level of depolarization to trigger action potential spreading along the muscle-fiber membrane. At the presynaptic level, the end-plate potential amplitude depends not only on the acetylcholine quanta number released from the nerve terminals in response to the nerve impulse but also on a degree of synchronicity of quanta releases. The time course of stimulus-phasic synchronous quanta secretion is modulated by many extra- and intracellular factors. One of the pathways to regulate the neurosecretion kinetics of acetylcholine quanta is an activation of presynaptic autoreceptors. This review discusses the contribution of acetylcholine presynaptic receptors to the control of the kinetics of evoked acetylcholine release from nerve terminals at the neuromuscular junctions. The timing characteristics of neurotransmitter release is nowadays considered an essential factor determining the plasticity and efficacy of synaptic transmission.

11.
J Vis Exp ; (178)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34927611

RESUMO

Estimation of the presynaptic calcium level is a key task in studying synaptic transmission since calcium entry into the presynaptic cell triggers a cascade of events leading to neurotransmitter release. Moreover, changes in presynaptic calcium levels mediate the activity of many intracellular proteins and play an important role in synaptic plasticity. Studying calcium signaling is also important for finding ways to treat neurodegenerative diseases. The neuromuscular junction is a suitable model for studying synaptic plasticity, as it has only one type of neurotransmitter. This article describes the method for loading a calcium-sensitive dye through the cut nerve bundle into the mice's motor nerve endings. This method allows the estimation of all parameters related to intracellular calcium changes, such as basal calcium level and calcium transient. Since the influx of calcium from the cell exterior into the nerve terminals and its binding/unbinding to the calcium-sensitive dye occur within the range of a few milliseconds, a speedy imaging system is required to record these events. Indeed, high-speed cameras are commonly used for the registration of fast calcium changes, but they have low image resolution parameters. The protocol presented here for recording calcium transient allows extremely good spatial-temporal resolution provided by confocal microscopy.


Assuntos
Cálcio , Junção Neuromuscular , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Camundongos , Microscopia Confocal , Junção Neuromuscular/fisiologia , Terminações Pré-Sinápticas/fisiologia , Transmissão Sináptica
12.
Mater Sci Eng C Mater Biol Appl ; 128: 112355, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34474903

RESUMO

Electrostatically driven self-assembly of [Au2L2]2+ (L is cyclic PNNP ligand) with [{Mo6I8}(L')6]2- (L' = I-, CH3COO-) in aqueous solutions is introduced as facile route for combination of therapeutic and cellular contrasting functions within heterometallic colloids (Mo6-Au2). The nature of L' affects the size and aggregation behavior of crystalline Mo6-Au2 aggregates, which in turn affect the luminescence of the cluster units incorporated into Mo6-Au2 colloids. The spin trap facilitated electron spin resonance spectroscopy technique indicates that the level of ROS generated by Mo6-Au2 colloids is also affected by their size. Both (L' = I-, CH3COO-) Mo6-Au2 colloids undergo cell internalization, which is enhanced by their assembly with poly-DL-lysine (PL) for L' = CH3COO-, but remains unchanged for L' = I-. The colloids PL-Mo6-Au2 (L' = CH3COO-) are visualized as huge crystalline aggregates both outside and inside the cell cytoplasm by confocal microscopy imaging of the incubated cells, while the smaller sized (30-50 nm) PL-Mo6-Au2 (L' = I-) efficiently stain the cell nuclei. Quantitative colocalization analysis of PL-Mo6-Au2 (L' = CH3COO-) in lysosomal compartments points to the fast endo-lysosomal escape of the colloids followed by their intracellular aggregation. The cytotoxicity of PL-Mo6-Au2 differs from that of Mo6 and Au2 blocks, predominantly acting through apoptotic pathway. The photodynamic therapeutic effect of the PL-Mo6-Au2 colloids on the cancer cells correlates with their intracellular trafficking and aggregation.


Assuntos
Fotoquimioterapia , Coloides , Luminescência , Polímeros , Água
13.
Int J Mol Sci ; 22(16)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34445737

RESUMO

Cholinergic neurotransmission is a key signal pathway in the peripheral nervous system and in several branches of the central nervous system. Despite the fact that it has been studied extensively for a long period of time, some aspects of its regulation still have not yet been established. One is the relationship between the nicotine-induced autoregulation of acetylcholine (ACh) release with changes in the concentration of presynaptic calcium levels. The mouse neuromuscular junction of m. Levator Auris Longus was chosen as the model of the cholinergic synapse. ACh release was assessed by electrophysiological methods. Changes in calcium transients were recorded using a calcium-sensitive dye. Nicotine hydrogen tartrate salt application (10 µM) decreased the amount of evoked ACh release, while the calcium transient increased in the motor nerve terminal. Both of these effects of nicotine were abolished by the neuronal ACh receptor antagonist dihydro-beta-erythroidine and Cav1 blockers, verapamil, and nitrendipine. These data allow us to suggest that neuronal nicotinic ACh receptor activation decreases the number of ACh quanta released by boosting calcium influx through Cav1 channels.


Assuntos
Acetilcolina/metabolismo , Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo , Neurônios Motores/metabolismo , Junção Neuromuscular/metabolismo , Animais , Eletrodiagnóstico , Feminino , Técnicas In Vitro , Masculino , Camundongos Endogâmicos BALB C , Nicotina , Canais de Potássio Cálcio-Ativados/metabolismo
14.
Int J Pharm ; 604: 120776, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34098055

RESUMO

Novel nanocomposite system based on mesoporous silica nanoparticles (MSNs) noncovalently modified with hexadecyltriphenylphosphonium bromide (HTPPB) has been prepared, thoroughly characterized and used for encapsulation of model cargo Rhodamine B (RhB). The high encapsulation efficacy of this dye by HTPPB-modified mesoporous particles was demonstrated by spectrophotometry and thermography techniques. The bioavailability of MSN@HTPPB was testified. Cytotoxicity assay revealed that a marked suppression of M-HeLa cancer cells (epithelioid carcinoma of the cervix) occurs at concentration of 0.06 µg/mL, while the higher viability of Chang liver normal cell line was preserved in the concentration range of 0.98-0.06 µg/mL. Hemolysis assay demonstrated that only 2% of red blood cells are destructed at ~ 30 µg/mL concentration. This allows us to select the most harmless compositions based on MSN@HTPPB with minimal side effects toward normal cells and recommend them for the development of antitumor formulations. Fluorescence microscopy technique testified satisfactory penetration of HTPPB-modified carriers into M-HeLa cells. Importantly, modification of the MSN with HTPPB is shown to promote efficient delivery to mitochondria. To the best of our knowledge, it is one of the first successful examples of noncovalent surface modification of the MSNs with lipophilic phosphonium cation that improves targeted delivery of loads to mitochondria.


Assuntos
Nanopartículas , Dióxido de Silício , Cátions , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Feminino , Células HeLa , Humanos , Mitocôndrias , Porosidade
15.
Microsc Microanal ; 26(2): 204-210, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32115011

RESUMO

Here, we describe a method of acquisition of fast fluorescent signals with the help of the laser scanning confocal microscope (LSCM). Our method permits an increase in the temporal resolution of acquired signals. The method is based on LSCM recordings of fast fluorescent signals with the shortest achievable time sweep, which are performed with the help of a proprietary algorithm. A series of recordings is made in multiple steps; at each step, the fluorescent signal is incremented by a time interval smaller than the time sweep of the frame of LSCM. The size of the increment determines the achievable time resolution. The convolution of the recorded images results in a signal with the temporal resolution determined by the chosen time increment. This method was applied to register the change in fluorescence (calcium transient) of calcium dye preloaded into peripheral nerve endings by electrical stimulation of the motor nerve. Calculated parameters of the calcium transient were identical to the parameters obtained earlier with the help of a high-speed camera and photodiode. We conclude that the method described here can be applied for the registration of fast fluorescent signals by LSCM with a high spatial and temporal resolution.

16.
Neuroscience ; 439: 181-194, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31302264

RESUMO

Genetically encoded biosensors are widely used in cell biology for the non-invasive imaging of concentrations of ions or the activity of enzymes, to evaluate the distribution of small molecules, proteins and organelles, and to image protein interactions in living cells. These fluorescent molecules can be used either by transient expression in cultured cells or in entire organisms or through stable expression by producing transgenic animals characterized by genetically encoded and heritable biosensors. Using the mouse Thy1 mini-promoter, we generated a line of transgenic mice expressing a genetically encoded sensor for the simultaneous measurements of intracellular Cl- and pH. This construct, called ClopHensor, consists of a H+- and Cl--sensitive variant of the enhanced green fluorescent protein (E2GFP) fused with a red fluorescent protein (DsRedm). Stimulation of hippocampal Schaffer collaterals proved that the sensor is functionally active. To reveal the expression pattern of ClopHensor across the brain of Thy1::ClopHensor mice, we obtained transparent brain samples using the CLARITY method and imaged them with confocal and light-sheet microscopy. We then developed a semi-quantitative approach to identify brain structures with high intrinsic sensor fluorescence. This approach allowed us to assess cell morphology and track axonal projection, as well as to confirm E2GFP and DsRedm fluorescence colocalization. This analysis also provides a map of the brain areas suitable for non-invasive monitoring of intracellular Cl-/pH in normal and pathological conditions. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.


Assuntos
Axônios , Encéfalo , Animais , Proteínas de Fluorescência Verde/genética , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência
17.
J Mater Chem B ; 7(46): 7351-7362, 2019 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-31696196

RESUMO

The purpose of this work was to obtain cationic liposomes based on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine noncovalently modified using alkyltriphenylphosphonium bromides (TPPB-n) with different lengths of hydrocarbon tail for targeted delivery to mitochondria. The hydrodynamic diameter and electrokinetic potential of hybrid liposomes depending on the lipid/surfactant ratio were monitored in time with the aim to optimize the composition with sufficient stability and positive charge for mitochondria-targeted delivery. It was found that increasing the alkyl tail length of the surfactant (up to TPPB-14) leads to an increase in the positive charge of the liposomes. The most optimal results of stability were obtained for hybrid liposomes based on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and TPPB-12, TPPB-14. The obtained modified liposomes were loaded with hydrophilic substrates (a model probe Rhodamine B and medicines metronidazole and doxorubicin). This is one of the first examples of fabrication of liposomes noncovalently modified using an amphiphilic TPP cation, with the alkyl tail length of surfactant and TPP/lipid ratio optimized in terms of stability of the liposomes and the binding/release behavior of hydrophilic probes. Using the confocal microscopy method, it was shown that modification of liposomes with a triphenylphosphonium cation results in targeted delivery of encapsulated compounds to mitochondria.


Assuntos
Brometos/química , Cátions/química , Lipossomos/química , Mitocôndrias/metabolismo , Antineoplásicos/farmacologia , Benzopiranos/química , Linhagem Celular Tumoral , Portadores de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Hemólise , Humanos , Hidrodinâmica , Lipídeos/química , Fígado/efeitos dos fármacos , Metronidazol/química , Microscopia Confocal , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Rodaminas/química , Tensoativos/química
18.
Nanoscale ; 11(34): 16103-16113, 2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31432850

RESUMO

This report introduces both synthesis and in vitro biological behaviour of dual magnetic-fluorescent silica nanoparticles. The amino group-decoration of 78 nm sized silica nanoparticles enables their efficient internalization into motoneurons, which is visualized by the red fluorescence arising from [Ru(dipy)3]2+ complexes encapsulated into a silica matrix. The internalized nanoparticles are predominantly located in the cell cytoplasm as revealed by confocal microscopy imaging. The magnetic function of the nanoparticles resulted from the incorporation of 17 nm sized superparamagnetic iron oxide cores into the silica matrix, enabling their responsivity to magnetic fields. Fluorescence analysis revealed the "on-off" switching of Ca2+ influx under the application and further removal of the permanent magnetic field. This result for the first time highlights the movement of the nanoparticles within the cell cytoplasm in the permanent magnetic field as a promising tool to enhance the neuronal activity of motoneurons.

19.
Neuroscience ; 404: 91-101, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30738855

RESUMO

Septins (Sept) are highly conserved Guanosine-5'-triphosphate (GTP)-binding cytoskeletal proteins involved in neuronal signaling in the central nervous system but their involvement in signal transmission in peripheral synapses remains unclear. Sept5 and Sept9 proteins were detected in mouse peripheral neuromuscular junctions by immunofluorescence with a greater degree of co-localization with presynaptic than postsynaptic membranes. Preincubation of neuromuscular junction preparations with the inhibitor of Sept dynamics, forchlorfenuron (FCF), decreased co-localization of Sept with presynaptic membranes. FCF introduced ex vivo or in vivo had no effect on the amplitude of the spontaneous endplate currents (EPCs), indicating the absence of postsynaptic effects of FCF. However, FCF decreased acetylcholine (ACh) quantal release in response to nerve stimulation, reduced the amplitude of evoked quantal currents and decreased the number of quanta with long synaptic delays, demonstrating the presynaptic action of FCF. Nevertheless, FCF had no effect on the amplitude of calcium transient in nerve terminals, as detected by calcium-sensitive dye, and slightly decreased the ratio of the second response amplitude to the first one in paired-pulse experiments. These results suggest that FCF-induced decrease in ACh quantal secretion is not due to a decrease in Ca2+ influx but is likely related to the impairment of later stages occurring after Ca2+ entry, such as trafficking, docking or membrane fusion of synaptic vesicles. Therefore, Sept9 and Sept5 are abundantly expressed in presynaptic membranes, and disruption of Sept dynamics suppresses the evoked synchronous and delayed asynchronous quantal release of ACh, strongly suggesting an important role of Sept in the regulation of neurotransmission in peripheral synapses.


Assuntos
Potencial Evocado Motor/fisiologia , Junção Neuromuscular/patologia , Septinas/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Diafragma/inervação , Diafragma/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Nervo Frênico/fisiologia
20.
J Vis Exp ; (125)2017 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-28715368

RESUMO

One of the most feasible methods of measuring presynaptic calcium levels in presynaptic nerve terminals is optical recording. It is based on using calcium-sensitive fluorescent dyes that change their emission intensity or wavelength depending on the concentration of free calcium in the cell. There are several methods used to stain cells with calcium dyes. Most common are the processes of loading the dyes through a micropipette or pre-incubating with the acetoxymethyl ester forms of the dyes. However, these methods are not quite applicable to neuromuscular junctions (NMJs) due to methodological issues that arise. In this article, we present a method for loading a calcium-sensitive dye through the frog nerve stump of the frog nerve into the nerve endings. Since entry of external calcium into nerve terminals and the subsequent binding to the calcium dye occur within the millisecond time-scale, it is necessary to use a fast imaging system to record these interactions. Here, we describe a protocol for recording the calcium transient with a fast CCD camera.


Assuntos
Cálcio/metabolismo , Terminações Nervosas/metabolismo , Junção Neuromuscular/fisiologia , Animais , Rana clamitans
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...