Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38712231

RESUMO

Single-cell multiomic techniques have sparked immense interest in developing a comprehensive multi-modal map of diverse neuronal cell types and their brain wide projections. However, investigating the spatial organization, transcriptional and epigenetic landscapes of brain wide projection neurons is hampered by the lack of efficient and easily adoptable tools. Here we introduce Projection-TAGs, a retrograde AAV platform that allows multiplex tagging of projection neurons using RNA barcodes. By using Projection-TAGs, we performed multiplex projection tracing of the mouse cortex and high-throughput single-cell profiling of the transcriptional and epigenetic landscapes of the cortical projection neurons. Projection-TAGs can be leveraged to obtain a snapshot of activity-dependent recruitment of distinct projection neurons and their molecular features in the context of a specific stimulus. Given its flexibility, usability, and compatibility, we envision that Projection-TAGs can be readily applied to build a comprehensive multi-modal map of brain neuronal cell types and their projections.

2.
J Clin Invest ; 133(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36701202

RESUMO

Microglia, resident macrophages of the CNS, are essential to brain development, homeostasis, and disease. Microglial activation and proliferation are hallmarks of many CNS diseases, including neuropathic pain. However, molecular mechanisms that govern the spinal neuroimmune axis in the setting of neuropathic pain remain incompletely understood. Here, we show that genetic ablation or pharmacological blockade of transient receptor potential vanilloid type 4 (TRPV4) markedly attenuated neuropathic pain-like behaviors in a mouse model of spared nerve injury. Mechanistically, microglia-expressed TRPV4 mediated microglial activation and proliferation and promoted functional and structural plasticity of excitatory spinal neurons through release of lipocalin-2. Our results suggest that microglial TRPV4 channels reside at the center of the neuroimmune axis in the spinal cord, which transforms peripheral nerve injury into central sensitization and neuropathic pain, thereby identifying TRPV4 as a potential new target for the treatment of chronic pain.


Assuntos
Neuralgia , Neuroimunomodulação , Camundongos , Animais , Canais de Cátion TRPV/genética , Medula Espinal , Neuralgia/genética , Microglia
3.
ACS Nano ; 17(1): 561-574, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36548126

RESUMO

Neurotransmitters and neuromodulators mediate communication between neurons and other cell types; knowledge of release dynamics is critical to understanding their physiological role in normal and pathological brain function. Investigation into transient neurotransmitter dynamics has largely been hindered due to electrical and material requirements for electrochemical stimulation and recording. Current systems require complex electronics for biasing and amplification and rely on materials that offer limited sensor selectivity and sensitivity. These restrictions result in bulky, tethered, or battery-powered systems impacting behavior and that require constant care of subjects. To overcome these challenges, we demonstrate a fully implantable, wireless, and battery-free platform that enables optogenetic stimulation and electrochemical recording of catecholamine dynamics in real time. The device is nearly 1/10th the size of previously reported examples and includes a probe that relies on a multilayer electrode architecture featuring a microscale light emitting diode (µ-LED) and a carbon nanotube (CNT)-based sensor with sensitivities among the highest recorded in the literature (1264.1 nA µM-1 cm-2). High sensitivity of the probe combined with a center tapped antenna design enables the realization of miniaturized, low power circuits suitable for subdermal implantation even in small animal models such as mice. A series of in vitro and in vivo experiments highlight the sensitivity and selectivity of the platform and demonstrate its capabilities in freely moving, untethered subjects. Specifically, a demonstration of changes in dopamine concentration after optogenetic stimulation of the nucleus accumbens and real-time readout of dopamine levels after opioid and naloxone exposure in freely behaving subjects highlight the experimental paradigms enabled by the platform.


Assuntos
Catecolaminas , Optogenética , Camundongos , Animais , Dopamina , Tecnologia sem Fio , Próteses e Implantes
4.
Neuron ; 109(11): 1791-1809.e11, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-33979635

RESUMO

Optical manipulations of genetically defined cell types have generated significant insights into the dynamics of neural circuits. While optogenetic activation has been relatively straightforward, rapid and reversible synaptic inhibition has proven more elusive. Here, we leveraged the natural ability of inhibitory presynaptic GPCRs to suppress synaptic transmission and characterize parapinopsin (PPO) as a GPCR-based opsin for terminal inhibition. PPO is a photoswitchable opsin that couples to Gi/o signaling cascades and is rapidly activated by pulsed blue light, switched off with amber light, and effective for repeated, prolonged, and reversible inhibition. PPO rapidly and reversibly inhibits glutamate, GABA, and dopamine release at presynaptic terminals. Furthermore, PPO alters reward behaviors in a time-locked and reversible manner in vivo. These results demonstrate that PPO fills a significant gap in the neuroscience toolkit for rapid and reversible synaptic inhibition and has broad utility for spatiotemporal control of inhibitory GPCR signaling cascades.


Assuntos
Inibição Neural , Optogenética/métodos , Terminações Pré-Sinápticas/metabolismo , Recompensa , Transmissão Sináptica , Animais , Dopamina/metabolismo , Exocitose , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Ácido Glutâmico/metabolismo , Células HEK293 , Células HeLa , Humanos , Masculino , Camundongos , Terminações Pré-Sinápticas/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Opsinas de Bastonetes/genética , Opsinas de Bastonetes/metabolismo , Ácido gama-Aminobutírico/metabolismo
5.
Elife ; 102021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34032210

RESUMO

Itch is an unpleasant sensation that elicits robust scratching and aversive experience. However, the identity of the cells and neural circuits that organize this information remains elusive. Here, we show the necessity and sufficiency of chloroquine-activated neurons in the central amygdala (CeA) for both itch sensation and associated aversion. Further, we show that chloroquine-activated CeA neurons play important roles in itch-related comorbidities, including anxiety-like behaviors, but not in some aversive and appetitive behaviors previously ascribed to CeA neurons. RNA-sequencing of chloroquine-activated CeA neurons identified several differentially expressed genes as well as potential key signaling pathways in regulating pruritis. Finally, viral tracing experiments demonstrate that these neurons send projections to the ventral periaqueductal gray that are critical in modulation of itch. These findings reveal a cellular and circuit signature of CeA neurons orchestrating behavioral and affective responses to pruritus in mice.


Assuntos
Tonsila do Cerebelo/patologia , Prurido/patologia , Transcrição Gênica , Tonsila do Cerebelo/metabolismo , Animais , Comportamento Animal , Cloroquina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/patologia , Prurido/metabolismo , Análise de Sequência de RNA , Transdução de Sinais
6.
Cell Rep Med ; 1(7)2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33196055

RESUMO

Stress is a known trigger for flares of inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS); however, this process is not well understood. Here, we find that restraint stress in mice leads to signs of diarrhea, fecal dysbiosis, and a barrier defect via the opening of goblet-cell associated passages. Notably, stress increases host immunity to gut bacteria as assessed by immunoglobulin A (IgA)-bound gut bacteria. Stress-induced microbial changes are necessary and sufficient to elicit these effects. Moreover, similar to mice, many diarrhea-predominant IBS (IBS-D) patients from two cohorts display increased antibacterial immunity as assessed by IgA-bound fecal bacteria. This antibacterial IgA response in IBS-D correlates with somatic symptom severity and was distinct from healthy controls or IBD patients. These findings suggest that stress may play an important role in patients with IgA-associated IBS-D by disrupting the intestinal microbial community that alters gastrointestinal function and host immunity to commensal bacteria.


Assuntos
Diarreia/imunologia , Disbiose/imunologia , Microbioma Gastrointestinal/imunologia , Imunidade nas Mucosas , Imunoglobulina A/biossíntese , Síndrome do Intestino Irritável/imunologia , Estresse Psicológico/imunologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/imunologia , Translocação Bacteriana , Diarreia/microbiologia , Diarreia/patologia , Disbiose/microbiologia , Disbiose/patologia , Fezes/microbiologia , Feminino , Humanos , Imobilização/psicologia , Síndrome do Intestino Irritável/microbiologia , Síndrome do Intestino Irritável/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/genética , Estresse Psicológico/microbiologia , Estresse Psicológico/patologia , Simbiose
7.
Nat Commun ; 10(1): 4356, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31554789

RESUMO

Itch is a distinct aversive sensation that elicits a strong urge to scratch. Despite recent advances in our understanding of the peripheral basis of itch, we know very little regarding how central neural circuits modulate acute and chronic itch processing. Here we establish the causal contributions of defined periaqueductal gray (PAG) neuronal populations in itch modulation in mice. Chemogenetic manipulations demonstrate bidirectional modulation of scratching by neurons in the PAG. Fiber photometry studies show that activity of GABAergic and glutamatergic neurons in the PAG is modulated in an opposing manner during chloroquine-evoked scratching. Furthermore, activation of PAG GABAergic neurons or inhibition of glutamatergic neurons resulted in attenuation of scratching in both acute and chronic pruritis. Surprisingly, PAG GABAergic neurons, but not glutamatergic neurons, may encode the aversive component of itch. Thus, the PAG represents a neuromodulatory hub that regulates both the sensory and affective aspects of acute and chronic itch.


Assuntos
Vias Neurais/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Prurido , Animais , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/fisiologia , Ácido Glutâmico/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/citologia , Neurônios/citologia , Neurônios/metabolismo , Neurônios/fisiologia , Substância Cinzenta Periaquedutal/citologia
8.
Pain ; 160(5): 987-988, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30817439
9.
Nature ; 565(7739): 361-365, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30602791

RESUMO

The fast-growing field of bioelectronic medicine aims to develop engineered systems that can relieve clinical conditions by stimulating the peripheral nervous system1-5. This type of technology relies largely on electrical stimulation to provide neuromodulation of organ function or pain. One example is sacral nerve stimulation to treat overactive bladder, urinary incontinence and interstitial cystitis (also known as bladder pain syndrome)4,6,7. Conventional, continuous stimulation protocols, however, can cause discomfort and pain, particularly when treating symptoms that can be intermittent (for example, sudden urinary urgency)8. Direct physical coupling of electrodes to the nerve can lead to injury and inflammation9-11. Furthermore, typical therapeutic stimulators target large nerve bundles that innervate multiple structures, resulting in a lack of organ specificity. Here we introduce a miniaturized bio-optoelectronic implant that avoids these limitations by using (1) an optical stimulation interface that exploits microscale inorganic light-emitting diodes to activate opsins; (2) a soft, high-precision biophysical sensor system that allows continuous measurements of organ function; and (3) a control module and data analytics approach that enables coordinated, closed-loop operation of the system to eliminate pathological behaviours as they occur in real-time. In the example reported here, a soft strain gauge yields real-time information on bladder function in a rat model. Data algorithms identify pathological behaviour, and automated, closed-loop optogenetic neuromodulation of bladder sensory afferents normalizes bladder function. This all-optical scheme for neuromodulation offers chronic stability and the potential to stimulate specific cell types.


Assuntos
Neurônios/fisiologia , Optogenética/instrumentação , Optogenética/métodos , Bexiga Urinária/inervação , Bexiga Urinária/fisiologia , Tecnologia sem Fio/instrumentação , Algoritmos , Animais , Células Cultivadas , Eletrônica , Feminino , Gânglios Espinais/citologia , Humanos , Neurônios/citologia , Ratos , Ratos Sprague-Dawley , Raízes Nervosas Espinhais/citologia
10.
Proc Natl Acad Sci U S A ; 115(34): E8057-E8066, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30082378

RESUMO

Peripheral nerve damage initiates a complex series of structural and cellular processes that culminate in chronic neuropathic pain. The recent success of a type 2 angiotensin II (Ang II) receptor (AT2R) antagonist in a phase II clinical trial for the treatment of postherpetic neuralgia suggests angiotensin signaling is involved in neuropathic pain. However, transcriptome analysis indicates a lack of AT2R gene (Agtr2) expression in human and rodent sensory ganglia, raising questions regarding the tissue/cell target underlying the analgesic effect of AT2R antagonism. We show that selective antagonism of AT2R attenuates neuropathic but not inflammatory mechanical and cold pain hypersensitivity behaviors in mice. Agtr2-expressing macrophages (MΦs) constitute the predominant immune cells that infiltrate the site of nerve injury. Interestingly, neuropathic mechanical and cold pain hypersensitivity can be attenuated by chemogenetic depletion of peripheral MΦs and AT2R-null hematopoietic cell transplantation. Our study identifies AT2R on peripheral MΦs as a critical trigger for pain sensitization at the site of nerve injury, and therefore proposes a translatable peripheral mechanism underlying chronic neuropathic pain.


Assuntos
Dor Crônica/metabolismo , Macrófagos/metabolismo , Neuralgia/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Aloenxertos , Animais , Dor Crônica/genética , Dor Crônica/patologia , Transplante de Células-Tronco Hematopoéticas , Macrófagos/patologia , Camundongos , Neuralgia/genética , Neuralgia/patologia , Receptor Tipo 2 de Angiotensina/genética
11.
Gastroenterology ; 155(2): 514-528.e6, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29782847

RESUMO

BACKGROUND & AIMS: Strategies are needed to increase gastrointestinal transit without systemic pharmacologic agents. We investigated whether optogenetics, focal application of light to control enteric nervous system excitability, could be used to evoke propagating contractions and increase colonic transit in mice. METHODS: We generated transgenic mice with Cre-mediated expression of light-sensitive channelrhodopsin-2 (ChR2) in calretinin neurons (CAL-ChR2 Cre+ mice); Cre- littermates served as controls. Colonic myenteric neurons were analyzed by immunohistochemistry, patch-clamp, and calcium imaging studies. Motility was assessed by mechanical, electrophysiological, and video recording in vitro and by fecal output in vivo. RESULTS: In isolated colons, focal light stimulation of calretinin enteric neurons evoked classic polarized motor reflexes (50/58 stimulations), followed by premature anterograde propagating contractions (39/58 stimulations). Light stimulation could evoke motility from sites along the entire colon. These effects were prevented by neural blockade with tetrodotoxin (n = 2), and did not occur in control mice (n = 5). Light stimulation of proximal colon increased the proportion of natural fecal pellets expelled over 15 minutes in vitro (75% ± 17% vs 32% ± 8% for controls) (P < .05). In vivo, activation of wireless light-emitting diodes implanted onto the colon wall significantly increased hourly fecal pellet output in conscious, freely moving mice (4.2 ± 0.4 vs 1.3 ± 0.3 in controls) (P < .001). CONCLUSIONS: In studies of mice, we found that focal activation of a subset of enteric neurons can increase motility of the entire colon in vitro, and fecal output in vivo. Optogenetic control of enteric neurons might therefore be used to modify gut motility.


Assuntos
Colo/fisiologia , Sistema Nervoso Entérico/fisiologia , Trânsito Gastrointestinal/efeitos da radiação , Luz , Optogenética/métodos , Animais , Calbindina 2/genética , Calbindina 2/metabolismo , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Channelrhodopsins/efeitos da radiação , Colo/inervação , Colo/efeitos da radiação , Sistema Nervoso Entérico/citologia , Trânsito Gastrointestinal/genética , Camundongos , Camundongos Transgênicos , Modelos Animais , Neurônios/metabolismo , Neurônios/efeitos da radiação
12.
eNeuro ; 5(2)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29766046

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) is known to regulate cellular growth pathways, and its genetic activation is sufficient to enhance regenerative axon growth following injury to the central or peripheral nervous systems. However, excess mTORC1 activation may promote innervation defects, and mTORC1 activity mediates injury-induced hypersensitivity, reducing enthusiasm for the pathway as a therapeutic target. While mTORC1 activity is required for full expression of some pain modalities, the effects of pathway activation on nociceptor phenotypes and sensory behaviors are currently unknown. To address this, we genetically activated mTORC1 in mouse peripheral sensory neurons by conditional deletion of its negative regulator Tuberous Sclerosis Complex 2 (Tsc2). Consistent with the well-known role of mTORC1 in regulating cell size, soma size and axon diameter of C-nociceptors were increased in Tsc2-deleted mice. Glabrous skin and spinal cord innervation by C-fiber neurons were also disrupted. Transcriptional profiling of nociceptors enriched by fluorescence-associated cell sorting (FACS) revealed downregulation of multiple classes of ion channels as well as reduced expression of markers for peptidergic nociceptors in Tsc2-deleted mice. In addition to these changes in innervation and gene expression, Tsc2-deleted mice exhibited reduced noxious heat sensitivity and decreased injury-induced cold hypersensitivity, but normal baseline sensitivity to cold and mechanical stimuli. Together, these data show that excess mTORC1 activity in sensory neurons produces changes in gene expression, neuron morphology and sensory behavior.


Assuntos
Gânglios Espinais/metabolismo , Hipestesia/metabolismo , Canais Iônicos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fibras Nervosas Amielínicas/metabolismo , Nociceptividade/fisiologia , Nociceptores/fisiologia , Traumatismos dos Nervos Periféricos/metabolismo , Células Receptoras Sensoriais/metabolismo , Pele/inervação , Animais , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Feminino , Gânglios Espinais/patologia , Gânglios Espinais/fisiopatologia , Temperatura Alta , Hipestesia/patologia , Hipestesia/fisiopatologia , Masculino , Camundongos , Camundongos Transgênicos , Fibras Nervosas Amielínicas/patologia , Traumatismos dos Nervos Periféricos/patologia , Traumatismos dos Nervos Periféricos/fisiopatologia , Células Receptoras Sensoriais/patologia , Proteína 2 do Complexo Esclerose Tuberosa/deficiência
13.
Artigo em Inglês | MEDLINE | ID: mdl-29483864

RESUMO

Bladder-innervating primary sensory neurons mediate reflex-driven bladder function under normal conditions, and contribute to debilitating bladder pain and/or overactivity in pathological states. The goal of this study was to examine the respective roles of defined subtypes of afferent neurons in bladder sensation and function in vivo via direct optogenetic activation. To accomplish this goal, we generated transgenic lines that express a Channelrhodopsin-2-eYFP fusion protein (ChR2-eYFP) in two distinct populations of sensory neurons: TRPV1-lineage neurons (Trpv1Cre;Ai32, the majority of nociceptors) and Nav1.8+ neurons (Scn10aCre;Ai32, nociceptors and some mechanosensitive fibers). In spinal cord, eYFP+ fibers in Trpv1Cre;Ai32 mice were observed predominantly in dorsal horn (DH) laminae I-II, while in Scn10aCre;Ai32 mice they extended throughout the DH, including a dense projection to lamina X. Fiber density correlated with number of retrogradely-labeled eYFP+ dorsal root ganglion neurons (82.2% Scn10aCre;Ai32 vs. 62% Trpv1Cre;Ai32) and degree of DH excitatory synaptic transmission. Photostimulation of peripheral afferent terminals significantly increased visceromotor responses to noxious bladder distension (30-50 mmHg) in both transgenic lines, and to non-noxious distension (20 mmHg) in Scn10aCre;Ai32 mice. Depolarization of ChR2+ afferents in Scn10aCre;Ai32 mice produced low- and high-amplitude bladder contractions respectively in 53% and 27% of stimulation trials, and frequency of high-amplitude contractions increased to 60% after engagement of low threshold (LT) mechanoreceptors by bladder filling. In Trpv1Cre;Ai32 mice, low-amplitude contractions occurred in 27% of trials before bladder filling, which was pre-requisite for light-evoked high-amplitude contractions (observed in 53.3% of trials). Potential explanations for these observations include physiological differences in the thresholds of stimulated fibers and their connectivity to spinal circuits.

14.
Sci Rep ; 7(1): 15865, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29158567

RESUMO

Patients with interstitial cystitis/bladder pain syndrome (IC/BPS) suffer from chronic pain that severely affects quality of life. Although the underlying pathophysiology is not well understood, inhibition of bladder sensory afferents temporarily relieves pain. Here, we explored the possibility that optogenetic inhibition of nociceptive sensory afferents could be used to modulate bladder pain. The light-activated inhibitory proton pump Archaerhodopsin (Arch) was expressed under control of the sensory neuron-specific sodium channel (sns) gene to selectively silence these neurons. Optically silencing nociceptive sensory afferents significantly blunted the evoked visceromotor response to bladder distension and led to small but significant changes in bladder function. To study of the role of nociceptive sensory afferents in freely behaving mice, we developed a fully implantable, flexible, wirelessly powered optoelectronic system for the long-term manipulation of bladder afferent expressed opsins. We found that optogenetic inhibition of nociceptive sensory afferents reduced both ongoing pain and evoked cutaneous hypersensitivity in the context of cystitis, but had no effect in uninjured, naïve mice. These results suggest that selective optogenetic silencing of nociceptive bladder afferents may represent a potential future therapeutic strategy for the treatment of bladder pain.


Assuntos
Hiperalgesia/fisiopatologia , Dor Nociceptiva/fisiopatologia , Dor Pélvica/fisiopatologia , Bexiga Urinária/fisiopatologia , Vias Aferentes/metabolismo , Animais , Proteínas Arqueais/genética , Cistite Intersticial/genética , Cistite Intersticial/fisiopatologia , Gânglios Espinais , Humanos , Hiperalgesia/genética , Camundongos , Neurônios Aferentes/patologia , Dor Nociceptiva/genética , Optogenética/métodos , Dor Pélvica/genética , Qualidade de Vida , Canais de Sódio/genética
15.
Pain ; 158(11): 2108-2116, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28700536

RESUMO

The advent of optogenetic tools has allowed unprecedented insights into the organization of neuronal networks. Although recently developed technologies have enabled implementation of optogenetics for studies of brain function in freely moving, untethered animals, wireless powering and device durability pose challenges in studies of spinal cord circuits where dynamic, multidimensional motions against hard and soft surrounding tissues can lead to device degradation. We demonstrate here a fully implantable optoelectronic device powered by near-field wireless communication technology, with a thin and flexible open architecture that provides excellent mechanical durability, robust sealing against biofluid penetration and fidelity in wireless activation, thereby allowing for long-term optical stimulation of the spinal cord without constraint on the natural behaviors of the animals. The system consists of a double-layer, rectangular-shaped magnetic coil antenna connected to a microscale inorganic light-emitting diode (µ-ILED) on a thin, flexible probe that can be implanted just above the dura of the mouse spinal cord for effective stimulation of light-sensitive proteins expressed in neurons in the dorsal horn. Wireless optogenetic activation of TRPV1-ChR2 afferents with spinal µ-ILEDs causes nocifensive behaviors and robust real-time place aversion with sustained operation in animals over periods of several weeks to months. The relatively low-cost electronics required for control of the systems, together with the biocompatibility and robust operation of these devices will allow broad application of optogenetics in future studies of spinal circuits, as well as various peripheral targets, in awake, freely moving and untethered animals, where existing approaches have limited utility.


Assuntos
Optogenética , Medula Espinal/fisiologia , Tecnologia sem Fio , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Fenômenos Eletromagnéticos , Comportamento Exploratório/fisiologia , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Medula Espinal/metabolismo , Nervos Espinhais/lesões , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Vigília
16.
eNeuro ; 4(2)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28374016

RESUMO

The ventrolateral periaqueductal gray (vlPAG) constitutes a major descending pain modulatory system and is a crucial site for opioid-induced analgesia. A number of previous studies have demonstrated that glutamate and GABA play critical opposing roles in nociceptive processing in the vlPAG. It has been suggested that glutamatergic neurotransmission exerts antinociceptive effects, whereas GABAergic neurotransmission exert pronociceptive effects on pain transmission, through descending pathways. The inability to exclusively manipulate subpopulations of neurons in the PAG has prevented direct testing of this hypothesis. Here, we demonstrate the different contributions of genetically defined glutamatergic and GABAergic vlPAG neurons in nociceptive processing by employing cell type-specific chemogenetic approaches in mice. Global chemogenetic manipulation of vlPAG neuronal activity suggests that vlPAG neural circuits exert tonic suppression of nociception, consistent with previous pharmacological and electrophysiological studies. However, selective modulation of GABAergic or glutamatergic neurons demonstrates an inverse regulation of nociceptive behaviors by these cell populations. Selective chemogenetic activation of glutamatergic neurons, or inhibition of GABAergic neurons, in vlPAG suppresses nociception. In contrast, inhibition of glutamatergic neurons, or activation of GABAergic neurons, in vlPAG facilitates nociception. Our findings provide direct experimental support for a model in which excitatory and inhibitory neurons in the PAG bidirectionally modulate nociception.


Assuntos
Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Nociceptividade/fisiologia , Percepção da Dor/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Animais , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurotransmissores/farmacologia , Nociceptividade/efeitos dos fármacos , Percepção da Dor/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Técnicas de Cultura de Tecidos
17.
Pain ; 158(7): 1241-1253, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28328571

RESUMO

Neuropathic pain is a debilitating pathological condition that is poorly understood. Recent evidence suggests that abnormal central processing occurs during the development of neuropathic pain induced by the cancer chemotherapeutic agent, paclitaxel. Yet, it is unclear what role neurons in supraspinal pain network sites, such as the periaqueductal gray, play in altered behavioral sensitivity seen during chronic pain conditions. To elucidate these mechanisms, we studied the spontaneous and thermally evoked firing patterns of ventrolateral periaqueductal gray (vlPAG) neurons in awake-behaving rats treated with paclitaxel to induce neuropathic pain. In the present study, vlPAG neurons in naive rats exhibited either excitatory, inhibitory, or neutral responses to noxious thermal stimuli, as previously observed. However, after development of behavioral hypersensitivity induced by the chemotherapeutic agent, paclitaxel, vlPAG neurons displayed increased neuronal activity and changes in thermal pain-evoked neuronal activity. This involved elevated levels of spontaneous firing and heightened responsiveness to nonnoxious stimuli (allodynia) as well as noxious thermal stimuli (hyperalgesia) as compared with controls. Furthermore, after paclitaxel treatment, only excitatory neuronal responses were observed for both nonnoxious and noxious thermal stimuli. Systemic administration of gabapentin, a nonopioid analgesic, induced significant dose-dependent decreases in the elevated spontaneous and thermally evoked vlPAG neuronal firing to both nonnoxious and noxious thermal stimuli in rats exhibiting neuropathic pain, but not in naive rats. Thus, these results show a strong correlation between behavioral hypersensitivity to thermal stimuli and increased firing of vlPAG neurons in allodynia and hyperalgesia that occur in this neuropathic pain model.


Assuntos
Potenciais de Ação/fisiologia , Aminas/uso terapêutico , Analgésicos/uso terapêutico , Ácidos Cicloexanocarboxílicos/uso terapêutico , Neuralgia/fisiopatologia , Neurônios/fisiologia , Substância Cinzenta Periaquedutal/fisiopatologia , Ácido gama-Aminobutírico/uso terapêutico , Potenciais de Ação/efeitos dos fármacos , Aminas/farmacologia , Analgésicos/farmacologia , Animais , Ácidos Cicloexanocarboxílicos/farmacologia , Gabapentina , Temperatura Alta , Masculino , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Neurônios/efeitos dos fármacos , Paclitaxel , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Ácido gama-Aminobutírico/farmacologia
18.
Neuron ; 93(3): 509-521.e3, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28132830

RESUMO

In vivo optogenetics provides unique, powerful capabilities in the dissection of neural circuits implicated in neuropsychiatric disorders. Conventional hardware for such studies, however, physically tethers the experimental animal to an external light source, limiting the range of possible experiments. Emerging wireless options offer important capabilities that avoid some of these limitations, but the current size, bulk, weight, and wireless area of coverage is often disadvantageous. Here, we present a simple but powerful setup based on wireless, near-field power transfer and miniaturized, thin, flexible optoelectronic implants, for complete optical control in a variety of behavioral paradigms. The devices combine subdermal magnetic coil antennas connected to microscale, injectable light-emitting diodes (LEDs), with the ability to operate at wavelengths ranging from UV to blue, green-yellow, and red. An external loop antenna allows robust, straightforward application in a multitude of behavioral apparatuses. The result is a readily mass-producible, user-friendly technology with broad potential for optogenetics applications.


Assuntos
Encéfalo , Optogenética/instrumentação , Tecnologia sem Fio/instrumentação , Animais , Camundongos , Opsinas
19.
Nat Biotechnol ; 33(12): 1280-1286, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26551059

RESUMO

Optogenetics allows rapid, temporally specific control of neuronal activity by targeted expression and activation of light-sensitive proteins. Implementation typically requires remote light sources and fiber-optic delivery schemes that impose considerable physical constraints on natural behaviors. In this report we bypass these limitations using technologies that combine thin, mechanically soft neural interfaces with fully implantable, stretchable wireless radio power and control systems. The resulting devices achieve optogenetic modulation of the spinal cord and peripheral nervous system. This is demonstrated with two form factors; stretchable film appliqués that interface directly with peripheral nerves, and flexible filaments that insert into the narrow confines of the spinal epidural space. These soft, thin devices are minimally invasive, and histological tests suggest they can be used in chronic studies. We demonstrate the power of this technology by modulating peripheral and spinal pain circuitry, providing evidence for the potential widespread use of these devices in research and future clinical applications of optogenetics outside the brain.

20.
J Pain ; 16(4): 346-56, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25640289

RESUMO

UNLABELLED: Chronic pruritic conditions are often associated with dry skin and loss of epidermal barrier integrity. In this study, repeated application of acetone and ether followed by water (AEW) to the cheek skin of mice produced persistent scratching behavior with no increase in pain-related forelimb wiping, indicating the generation of itch without pain. Cheek skin immunohistochemistry showed a 64.5% increase in total epidermal innervation in AEW-treated mice compared to water-treated controls. This increase was independent of scratching, because mice prevented from scratching by Elizabethan collars showed similar hyperinnervation. To determine the effects of dry skin treatment on specific subsets of peripheral fibers, we examined Ret-positive, calcitonin gene-related peptide (CGRP)-positive, and glial cell line-derived neurotrophic factor family receptor α3 (GFRα3)-positive intraepidermal fiber density. AEW treatment increased Ret-positive fibers but not CGRP-positive or GFRα3-positive fibers, suggesting that a specific subset of nonpeptidergic fibers could contribute to dry skin itch. To test whether trigeminal ganglion neurons innervating the cheek exhibited altered excitability after AEW treatment, primary cultures of retrogradely labeled neurons were examined using whole-cell patch clamp electrophysiology. AEW treatment produced no differences in measures of excitability compared to water-treated controls. In contrast, a significantly higher proportion of trigeminal ganglion neurons was responsive to the nonhistaminergic pruritogen chloroquine after AEW treatment. We conclude that nonpeptidergic, Ret-positive fibers and chloroquine-sensitive neurons may contribute to dry skin pruritus. PERSPECTIVE: This study examines the underlying neurobiological mechanisms of persistent dry skin itch. Our results indicate that nonpeptidergic epidermal hyperinnervation and nonhistaminergic pruritic receptors are potential targets for chronic pruritus.


Assuntos
Cloroquina/toxicidade , Neurônios/fisiologia , Prurido/fisiopatologia , Pele/inervação , Gânglio Trigeminal/fisiopatologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Cálcio/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Face/inervação , Face/fisiopatologia , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Rastreamento Neuroanatômico , Neurônios/efeitos dos fármacos , Neurônios/patologia , Técnicas de Patch-Clamp , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas c-ret/metabolismo , Prurido/induzido quimicamente , Prurido/etiologia , Prurido/patologia , Pele/efeitos dos fármacos , Pele/fisiopatologia , Gânglio Trigeminal/efeitos dos fármacos , Gânglio Trigeminal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...