Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Talanta ; 219: 121239, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32887130

RESUMO

The rare earth elements (REE) composition in Fe-mineral phases is an important tool in iron formation studies to obtain information about parent rocks and environmental and paragenetic processes. However, the determination of REE presents some difficulties, such as the low concentration of these elements, matrix complexity and lack of iron matrix certified reference materials. The aim of the present work is to propose an analytical method to determine the REE plus Y (REE + Y) contents at trace levels in Fe-(hydr)oxides by the laser ablation ICP-quadrupoleMS technique, using external calibration. The calibration curves were obtained from analyses of reference materials with different matrices, and the analytical conditions were checked on the NIST 614 glass. The linearity (R2 ≥ 0.98), limit of detection (0.002-0.044 µg g-1), limit of quantification (0.008-0.146 µg g-1), recovery (88.4-112.4%), and intraday (0.1-14.1%) and interday (1.6-17.8%) precision were systematically assessed. The results obtained showed that the method is fit for the purpose and showed evidence of a nonsignificant interference of the matrix. Thus, the developed procedure was applied in the analyses of magnetite, martite, hematite, and goethite grains from Cauê Iron Formation (Brazil). The REE + Y patterns of the minerals are consistent with the previous study of bulk analyses on whole rocks and highlight the postdepositional signature of these elements in banded iron formations.

2.
Antonie Van Leeuwenhoek ; 112(2): 211-223, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30132191

RESUMO

The pattern of glucose repression in most Kluyveromyces marxianus strains does not correlate with fermentative behaviour; however, glucose repression and fermentative metabolism appear to be linked to the kinetics of sugar uptake. In this work, we show that lactose transport in K. marxianus CCT 7735 by lactose-grown cells is mediated by a low-affinity H+-sugar symporter. This system is glucose repressed and able to transport galactose with low affinity. We also observed the activity of a distinct lactose transporter in response to raffinose. Regarding glucose uptake, specificities of at least three low-affinity systems rely on the carbon source available in a given growth medium. Interestingly, it was observed only one high-affinity system is able to transport both glucose and galactose. We also showed that K. marxianus CCT 7735 regulates the expression of sugar transport systems in response to glucose availability.


Assuntos
Kluyveromyces/metabolismo , Transporte Biológico , Meios de Cultura/química , Meios de Cultura/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Galactose/metabolismo , Glucose/metabolismo , Cinética , Kluyveromyces/química , Kluyveromyces/genética , Lactose/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...