Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38674604

RESUMO

Multi-strain Limosilactobacillus (L.) fermentum is a potential probiotic with reported immunomodulatory properties. This study aimed to evaluate the composition, richness, and diversity of the gut microbiota in male and female rats after treatment with a multi-strain of L. fermentum at different doses. Thirty rats (fifteen male and fifteen female) were allocated into a control group (CTL), a group receiving L. fermentum at a dose of 108 CFU (Lf-108), and a group receiving L. fermentum at a dose of 1010 CFU (Lf-1010) for 13 weeks. Gut microbiota and serum cytokine levels were evaluated after L. fermentum treatment. Male CTL rats had a lower relative abundance of Bifidobacteriaceae and Prevotella and a lower alpha diversity than their female CTL counterparts (p < 0.05). In addition, male CTL rats had a higher Firmicutes/Bacteroidetes (F/B) ratio than female CTL rats (p < 0.05). In female rats, the administration of L. fermentum at 108 CFU decreased the relative abundance of Bifidobacteriaceae and Anaerobiospirillum and increased Lactobacillus (p < 0.05). In male rats, the administration of L. fermentum at 1010 CFU decreased the F/B ratio and increased Lachnospiraceae and the diversity of the gut microbiota (p < 0.05). The relative abundance of Lachnospiraceae and the alpha-diversity of gut microbiota were negatively correlated with serum levels of IL1ß (r = -0.44) and TNFα (r = -0.39), respectively. This study identified important changes in gut microbiota between male and female rats and showed that a lower dose of L. fermentum may have more beneficial effects on gut microbiota in females, while a higher dose may result in more beneficial effects on gut microbiota in male rats.

2.
Probiotics Antimicrob Proteins ; 16(1): 308-319, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36708461

RESUMO

This study evaluated the effects of simulated gastrointestinal conditions (SGIC) on combined potentially probiotic Limosilactobacillus fermentum 296 (~ 10 log CFU/mL), quercetin (QUE, 160 mg), and/or resveratrol (RES, 150 mg) as the bioactive components of novel nutraceuticals. Four different nutraceuticals were evaluated during exposure to SGIC and analyzed the plate counts and physiological status of L. fermentum 296, contents and bioaccessibility of QUE and RES, and antioxidant capacity. Nutraceuticals with QUE and RES had the highest plate counts (4.94 ± 0.32 log CFU/mL) and sizes of live cell subpopulations (28.40 ± 0.28%) of L. fermentum 296 after SGIC exposure. An index of injured cells (Gmean index, arbitrary unit defined as above 0.5) indicated that part of L. fermentum 296 cells could be entered the viable but nonculturable state when the nutraceuticals were exposed to gastric and intestinal conditions while maintaining vitality. The nutraceuticals maintained high contents (QUE ~ 29.17 ± 0.62 and RES ~ 23.05 mg/100 g) and bioaccessibility (QUE ~ 41.0 ± 0.09% and RES ~ 67.4 ± 0.17%) of QUE and RES, as well as high antioxidant capacity (ABTS assay ~ 88.18 ± 1.16% and DPPH assay 75.54 ± 0.65%) during SGIC exposure, which could be linked to the protective effects on L. fermentum 296 cells. The developed nutraceuticals could cross along the gastrointestinal tract with high concentrations of functioning potentially probiotic cells and bioavailable phenolic compounds to exert their beneficial impacts on consumer health, being an innovative strategy for the co-ingestion of these bioactive components.


Assuntos
Gastroenteropatias , Limosilactobacillus fermentum , Probióticos , Humanos , Quercetina , Resveratrol , Antioxidantes , Probióticos/farmacologia
3.
Food Res Int ; 174(Pt 2): 113658, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37981375

RESUMO

This study investigated the potential impacts of the flour from Cereus jamacaru cactus cladodes (CJF), a cactus native to the Brazilian Caatinga biome, on the growth and metabolism of different potentially probiotic strains, as well as on the abundance of selected intestinal bacterial populations and microbial metabolic activity during in vitro colonic fermentation with a pooled human fecal inoculum. Cultivation of the probiotics in a medium with C. jamacaru cladodes flour (20 g/L) resulted in viable cell counts of up to 9.8 log CFU/mL, positive prebiotic activity scores (0.73-0.91), decreased pH and sugar contents, and increased lactic, acetic, and propionic acid production over time, indicating enhanced probiotic growth and metabolic activity. CJF overall increased the relative abundance of Lactobacillus spp./Enterococcus spp. (2.12-3.29%) and Bifidobacterium spp. (4.08-4.32%) and decreased the relative abundance of Bacteroides spp./Prevotella spp. (8.35-6.81%), Clostridium histolyticum (6.91-3.59%), and Eubacterium rectale/Clostridium coccoides (7.70-3.95%) during 48 h of an in vitro colonic fermentation using a pooled human fecal inoculum. CJF stimulated the microbial metabolic activity, with decreased pH, sugar consumption, lactic and short-chain fatty acid production, alterations in overall metabolic profiling and phenolic compound contents, and maintenance of high antioxidant capacity during colonic fermentation. These results show that CJF stimulated the growth and metabolic activity of distinct potential probiotics, increased the relative abundance of beneficial intestinal bacterial groups, and stimulated microbial metabolism during in vitro colonic fermentation. Further studies using advanced molecular technologies and in vivo experimental models could forward the investigation of the potential prebiotic properties of CJF.


Assuntos
Cactaceae , Microbioma Gastrointestinal , Humanos , Farinha , Fermentação , Metabolômica
4.
Artigo em Inglês | MEDLINE | ID: mdl-37792211

RESUMO

This study formulated sweet potato chips with powdered potentially probiotic Levilactobacillus brevis (SPLB) and Lactiplantibacillus plantarum (SPLP) and evaluated their impacts on human intestinal microbiota during 48 h of in vitro colonic fermentation. L. brevis and L. plantarum kept high viable cell counts (> 6 log CFU/g) on sweet potato chips after freeze-drying and during 60 days of storage. SPLB and SPLP had satisfactory quality parameters during 60 days of storage. SPLB and SPLP increased the relative abundance of Lactobacillus ssp./Enterococcus spp. (3.84-10.22%) and Bifidobacterium spp. (3.25-12.45%) and decreased the relative abundance of Bacteroides spp./Prevotella spp. (8.56-2.16%), Clostridium histolyticum (8.23-2.33%), and Eubacterium rectale/Clostridium coccoides (8.07-1.33%) during 48 h of in vitro colonic fermentation. SPLB and SPLP achieved high positive prebiotic indexes (> 8.24), decreased pH values and sugar contents, and increased lactic acid and short-chain fatty acid production, proving selective stimulatory effects on beneficial bacterial groups forming the intestinal microbiota. The results showed that SPLB and SPLP have good stability and high viable cell counts of L. brevis and L. plantarum when stored under room temperature and caused positive impacts on human intestinal microbiota, making them potentially probiotic non-dairy snack options.

5.
Artigo em Inglês | MEDLINE | ID: mdl-37561381

RESUMO

This study evaluated the impacts of novel nutraceuticals formulated with freeze-dried jabuticaba peel (FJP) and three potentially probiotic Limosilactobacillus fermentum strains on the abundance of bacterial groups forming the human intestinal microbiota, metabolite production, and antioxidant capacity during in vitro colonic fermentation. The nutraceuticals had high viable counts of L. fermentum after freeze-drying (≥ 9.57 ± 0.09 log CFU/g). The nutraceuticals increased the abundance of Lactobacillus ssp./Enterococcus spp. (2.46-3.94%), Bifidobacterium spp. (2.28-3.02%), and Ruminococcus albus/R. flavefaciens (0.63-4.03%), while decreasing the abundance of Bacteroides spp./Prevotella spp. (3.91-2.02%), Clostridium histolyticum (1.69-0.40%), and Eubacterium rectale/C. coccoides (3.32-1.08%), which were linked to positive prebiotic indices (> 1.75). The nutraceuticals reduced the pH and increased the sugar consumption, short-chain fatty acid production, phenolic acid content, and antioxidant capacity, besides altering the metabolic profile during colonic fermentation. The combination of FJP and probiotic L. fermentum is a promising strategy to produce nutraceuticals targeting intestinal microbiota.

6.
Food Res Int ; 171: 112998, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37330844

RESUMO

This study investigated the effects of freeze-dried red beet root (FDBR) and freeze-dried red beet stem and leaves (FDBSL) on target bacterial groups and metabolic activity of human colonic microbiota in vitro. The capability of FDBR and FDBSL to cause alterations in the relative abundance of different selected bacterial groups found as part of human intestinal microbiota, as well as in pH values, sugar, short-chain fatty acid, phenolic compounds, and antioxidant capacity were evaluated during 48 h of in vitro colonic fermentation. FDBR and FDBSL were submitted to simulated gastrointestinal digestion and freeze-dried prior to use in colonic fermentation. FDBR and FDBSL overall increased the relative abundance of Lactobacillus spp./Enterococcus spp. (3.64-7.60%) and Bifidobacterium spp. (2.76-5.78%) and decreased the relative abundance of Bacteroides spp./Prevotella spp. (9.56-4.18%), Clostridium histolyticum (1.62-1.15%), and Eubacterium rectale/Clostridium coccoides (2.33-1.49%) during 48 h of colonic fermentation. FDBR and FDBSL had high positive prebiotic indexes (>3.61) during colonic fermentation, indicating selective stimulatory effects on beneficial intestinal bacterial groups. FDBR and FDBSL increased the metabolic activity of human colonic microbiota, evidenced by decreased pH, sugar consumption, short-chain fatty acid production, alterations in phenolic compound contents, and maintenance of high antioxidant capacity during colonic fermentation. The results indicate that FDBR and FDBSL could induce beneficial alterations in the composition and metabolic activity of human intestinal microbiota, as well as that conventional and unconventional red beet edible parts are candidates to use as novel and sustainable prebiotic ingredients.


Assuntos
Beta vulgaris , Microbiota , Humanos , Prebióticos , Antioxidantes/farmacologia , Ácidos Graxos Voláteis
7.
Artigo em Inglês | MEDLINE | ID: mdl-37119497

RESUMO

Limosilactobacillus (L) fermentum (strains 139, 263, 296) is a novel probiotic mixture isolated from fruit processing by-products. The use of this formulation has been associated with improvements in cardiometabolic, inflammatory, and oxidative stress parameters. The present study evaluated the safety of a potential multi-strain probiotic by genotoxicity (micronucleus assay) and subchronic toxicity study (13-week repeated dose). In the genotoxicity evaluation, L. fermentum 139, 263, 296 did not increase the frequency of micronuclei in erythrocytes of rats of both sexes at doses up to 1010 CFU/mL. In the subchronic toxicity study, the administration of L. fermentum did not promote adverse health effects, such as behavioral changes, appearance of tumors, changes in hematological and biochemical parameters. In addition, higher doses of L. fermentum 139, 263, 296 have been shown to reduce the levels of pro-inflammatory cytokines. Administration of potentially probiotic L. fermentum did not promote adverse health effects in rats and could be evaluated as a potential probiotic for humans.

8.
Food Res Int ; 164: 112366, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36737953

RESUMO

Little knowledge is available in literature regarding the chemical composition and health-promoting effects of baru (Dipteryx alata Vog.) pulp, a by-product usually discarded by the agro-industry during the processing of baru fruit. This study evaluated the chemical composition of baru pulp and investigated its prebiotic activity on distinct probiotic strains and human colonic microbiota with in vitro assays. Baru pulp had high contents of insoluble dietary fibers and phenolic compounds (mainly hesperidin). Baru pulp stimulated the growth and metabolism of the probiotics Bifidobacterium animalis subsp. lactis BB-12, Lactobacillus acidophilus LA-05, and Lacticaseibacillus casei L-26. In addition, digested baru pulp induced significant benefits on the human colonic microbiota, increasing the relative abundance of Lactobacillus-Enterococcus, Bifidobacterium, and Bacteroides-Prevotella, as well as the production of lactate, acetate, propionate, and butyrate. The results show that baru pulp has potential prebiotic properties to be explored in the formulation of new health-promoting foods.


Assuntos
Bifidobacterium animalis , Dipteryx , Microbiota , Probióticos , Humanos , Dipteryx/química , Lactobacillus acidophilus , Lactobacillus
9.
Artigo em Inglês | MEDLINE | ID: mdl-36417111

RESUMO

This study evaluated the stability of a novel nutraceutical formulation composed of the probiotic Limosilactobacillus fermentum 296, quercetin (QUE), and resveratrol (RES) (LFQR) under different storage conditions. The effects of different relative humidities (RH; 11, 22, and 33%) and storage temperatures (refrigeration temperature -4 °C and room temperature -25 °C) on the stability of LFQR were evaluated through the determination of thermal stability, viable cell counts, bacterial physiological status, antioxidant capacity, and contents of QUE and RES during long-term storage. RH did not affect endothermic reactions and mass reduction in LFQR. After a 15-day-humidification period, L. fermentum 296 had higher viable cell counts in LFQR under refrigeration temperature storage when compared to room temperature storage regardless of the RH. The physiological status of L. fermentum 296 in LFQR was overall similar during 90 days of storage (11% RH) under refrigeration and room temperature. L. fermentum 296 had the highest viable cell counts (> 6 log CFU/g) in LFQR up to day 90 of refrigeration storage (11% RH). LFQR kept high contents of QUE and RES and maintained antioxidant capacity during 90 days of storage under refrigeration and room temperature. The results showed that the higher stability and functionality of LFQR during long-term storage should be guaranteed under 11% RH and refrigeration temperature.

10.
Arch Microbiol ; 204(8): 469, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35821535

RESUMO

The increasing interest in the effects of the gut microbiota on host health has stimulated the investigation of the composition of this microbial community and the factors affecting these microorganisms. This review discusses the recent advances and progress applications in the use of the fluorescent in situ hybridization (FISH) coupled to flow cytometry (FC) technique (FISH-FC) in studies evaluating the gut microbiota published in the last 10 years, with particular emphasis on the effects of foods and dietary interventions. These studies have shown that FISH-FC technique is capable of detecting and quantifying several groups of bacteria found as part of the gut microbiota. FISH-FC can be considered an effective, versatile, and rapid technique to evaluate alterations in gut microbiota composition caused by different foods as assessed in studies in vitro, in vivo, and in clinical trials. Some specific probes have been most used to represent the general gut microbiota, such as those specific to Lactobacillus spp./Enterococcus spp., Bacteroidaceae/Prevotellaceae, Clostridium histolyticum, and Bifidobacterium spp. FISH-FC technique could have an important opportunity for application in studies with next-generation probiotics belonging to the gut microbiota. Optimizations of FISH-FC protocols could allow more discoveries about the gut microbiota, including the development of new probes targeting microorganisms still not explored, the analysis of individual portions of the intestine, and the proposition of novel quantitative approaches.


Assuntos
Microbioma Gastrointestinal , Probióticos , Bifidobacterium , Citometria de Fluxo , Hibridização in Situ Fluorescente/métodos
11.
Foods ; 10(12)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34945509

RESUMO

Pilosocereus gounellei (A. Weber ex. K. Schum.) Bly. ex Rowl., popularly known as xique-xique, is a cactus from the Caatinga biome, which is rich in bioactive compounds but has not been previously studied as a source of lactic acid bacteria (LAB) with probiotic aptitudes. This study aimed to identify, characterize, and select LAB isolates with in vitro probiotic-related characteristics from xique-xique cladodes and fruit. Isolates with the most promising probiotic-related characteristics were evaluated regarding their in vitro technological properties and capability of surviving in chestnut milk, whey protein drink, and mate tea with mint during 21 days of refrigeration storage. Seventeen recovered isolates had typical characteristics of LAB. Six out of these seventeen LAB isolates passed the safety tests and were included in experiments to evaluate the in vitro probiotic-related characteristics. Based on the results of a principal component analysis, the isolates 69, 82, 98, and 108 had the best performances in experiments to evaluate the probiotic-related characteristics. In addition to showing good technological properties, the four selected LAB isolates had high viable counts (>7.3 log cfu/mL) and high sizes of physiologically active cell subpopulations in chestnut milk, whey protein drink, and mate tea during refrigeration storage. These four isolates were identified by 16S-rRNA sequencing as being Lacticaseibacillus paracasei or Lacticaseibacillus casei. The results indicate xique-xique as a source of potentially probiotic LAB isolates.

12.
Arch Microbiol ; 204(1): 38, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34928420

RESUMO

This study evaluated the dynamics of the physiological responses of potentially probiotic fruit-derived Limosilactobacillus fermentum 139 and L. fermentum 263 in apple and orange juice during 28 days of refrigeration storage (4 °C) and when submitted to simulated gastrointestinal conditions. Physiological responses were measured with multiparametric flow cytometry using propidium iodide (PI), carboxyfluorescein diacetate (cFDA) and bis-1,3-dibutylbarbutiric acid (BOX). Viable counts were enumerated with plate count. L. fermentum strains had sizes of > 30% of cell subpopulations with non-permeabilized membrane and enzymatic activities (viable cells, PI-CFDA +) in apple and orange juices during storage and viable counts of > 6 log CFU ml-1. Sizes of cell subpopulations with permeabilized membrane without enzymatic activity (dead cells, PI + cFDA-) were low (< 15%) in apple and orange juices during storage. Sizes of cell subpopulations with non-permeabilized and depolarized membrane (PI-BOX +) were decreased (14%) on day 28 of storage. The sizes of permeabilized and depolarized membrane cell (PI + BOX-) subpopulations were variable among the examined strains in juices during storage. Both strains maintained high PI-cFDA + cell subpopulation sizes (> 35%) after exposure to ileum condition and viable counts of ≥ 5 log CFU/mL. PI-BOX + cell subpopulation sizes were low (< 13%) after exposure to ileum condition. L. fermentum 139 and L. fermentum 263 are capable of maintaining a high population of physiologically active and functional cells in apple and orange juice during 28 days of refrigeration storage and when exposed to gastrointestinal conditions.


Assuntos
Citrus sinensis , Probióticos , Frutas , Sucos de Frutas e Vegetais , Refrigeração
13.
Food Chem ; 342: 128264, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33041168

RESUMO

This study developed and carried out an in vitro evaluation of nutraceutical formulations composed of potentially probiotic Limosilactobacillus fermentum (L. fermentum 139, L. fermentum 263 or L. fermentum 296), quercetin and/or resveratrol. L. fermentum strains had counts of >9 log CFU/g and contents of QUE and RES of >200 µg/mg in formulations after freeze-drying. Formulations with QUE and RES protected L. fermentum during exposure to in vitro acidic stomach conditions. L. fermentum strains had counts of >6 log CFU/g on day 60 and/or 90 of refrigeration storage. Contents of QUE (>29%) and RES (>50%) in formulations were potentially bioaccessible. Higher counts of L. fermentum and higher contents of QUE and RES were found in formulations stored under refrigerated rather than under room temperature. All nutraceutical formulations had antioxidant properties. Combinations of probiotic L. fermentum and QUE and/or RES should be an innovative strategy to develop added-value nutraceutical formulations.


Assuntos
Suplementos Nutricionais/análise , Suplementos Nutricionais/microbiologia , Limosilactobacillus fermentum , Quercetina/química , Resveratrol/química , Composição de Medicamentos , Liofilização , Probióticos/química
14.
Crit Rev Food Sci Nutr ; 61(12): 2022-2033, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32449379

RESUMO

This review discusses the available literature concerning the bioactive compounds of beet (Beta vulgaris L.) and their ability to modulate the gut microbiota and parameters indicative of gastrointestinal health. Data of published literature characterize beet as a source of a variety of bioactive compounds (e.g. diet fiber, pectic-oligosaccharides, betalains and phenolics) with proven beneficial effects on human health. Beet extracts and pectin and pectic-oligosaccharides from beet have shown able to modulate positively gut microbiota composition and activity, with noticeable bifidogenic effects, in addition to stimulate the growth and metabolism of probiotics. Beet betalains and phenolics seem to increase the production of metabolites (e.g. short chain fatty acids) by gut microbiota and probiotics, which are linked with different beneficial effects on host health. The outstanding contents of betalains and phenolics with antioxidant, anti-inflammatory and anti-carcinogenic properties have been linked to the positive effects of beet on gastrointestinal health. Beet should be a healthy choice for use in domestic meal preparations and a source of ingredients to formulate added-value functionalized food products.


Assuntos
Beta vulgaris , Microbioma Gastrointestinal , Antioxidantes , Betalaínas , Trato Gastrointestinal , Humanos
15.
3 Biotech ; 10(10): 448, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33062577

RESUMO

This study evaluated in vitro the potential prebiotic effects of a freeze-dried juice extracted from cladodes of Pilosocereus gounellei (A. Weber ex K. Schum.) Bly. Ex Rowl, an unconventional edible plant from Brazilian Caatinga biome and popularly known as xique-xique. Prebiotic effects of freeze-dried xique-xique cladode juice (XCJ, 20 g/L) were evaluated by measurements of prebiotic activity scores and stimulatory effects on growth and metabolic activities of probiotic Lactobacillus acidophilus LA-05, L. casei L-26 and L. paracasei L-10, which are beneficial species found as part of human gut microbiota. XCJ showed positive prebiotic activity scores on all examined probiotics, indicating a selective stimulatory effect on these microorganisms in detriment to enteric pathogens. Examined probiotics had high viable counts (> 8 log CFU/mL) after 48 h of cultivation in media with XCJ (20 g/L), representing an increase of > 2 log CFU/mL when compared to viable counts found on time zero. Cultivation of probiotics in media with XCJ resulted in decreased pH during the 48 h-incubation. Contents of fructose and glucose decreased in media with XCJ inoculated with L. acidophilus LA-05, L. casei L-26 or L. paracasei L-10 during the 48 h-cultivation, in parallel with an increase in contents of acetic and lactic acids. Measured effects of XCJ on probiotics were overall similar to those exerted by fructoligosaccharides (20 g/L), a proven prebiotic ingredient. These results showed that XCJ could exert selective stimulatory effects on different Lactobacillus species, which are indicative of potential prebiotic properties.

16.
Microorganisms ; 8(1)2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31936726

RESUMO

This study evaluated the protective effects of coproducts from agroindustrial processing of the tropical fruits acerola (Malpighia glabra L., ACE), cashew (Anacardium occidentale L., CAS), and guava (Psidium guayaba L., GUA) on the probiotics Lactobacillus paracasei L-10, Lactobacillus casei L-26, and Lactobacillus acidophilus LA-05 during freeze-drying and storage. The occurrence of damage to membrane integrity, membrane potential, and efflux activity of Lactobacillus cells after freeze-drying was evaluated by flow cytometry, and viable counts were measured immediately after freeze-drying and during 90 days of storage under refrigerated or room temperature conditions. Probiotic strains freeze-dried without substrate had the overall highest count reductions (0.5 ± 0.1 to 2.9 ± 0.3 log cycles) after freeze-drying. Probiotics freeze-dried with fruit processing coproducts had small cell subpopulations with damaged efflux activity and membrane potential. Average counts of probiotics freeze-dried with ACE, CAS, or GUA after 90 days of storage under refrigerated or room temperature were in the range of 4.2 ± 0.1 to 5.3 ± 0.2 and 2.6 ± 0.3 to 4.9 ± 0.2 log CFU/g, respectively, which were higher than those observed for strains freeze-dried without substrate. The greatest protective effects on freeze-dried probiotics were overall presented by ACE. These results revealed that ACE, CAS, and GUA can exert protective effects and increase the stability of probiotic lactobacilli during freeze-drying and storage, in addition to supporting a possible added-value destination for these agroindustrial coproducts as vehicles for probiotics and for the development of novel functional foods.

17.
Food Funct ; 8(6): 2121-2132, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28451663

RESUMO

Goat milk is an attractive food because of its nutritional properties, easy digestibility and hypoallergenicity. Goat milk yogurt is an appropriate matrix for the inclusion of new ingredients such as probiotic cultures, fruit and its derivatives. Grapes are rich in polyphenols and recognized for their health benefits. The aim of this study was to improve the quality characteristics of probiotic goat milk yogurt by the addition of an Isabel grape (Vitis labrusca L.) preparation (IGP). For this, the influence of the addition of IGP on the physicochemical, microbiological and sensory characteristics of goat milk yogurt containing the probiotic Lactobacillus acidophilus LA-05 was evaluated during 28 days of refrigerated storage (5 ± 0.5 °C). Four yogurt formulations were prepared, each varying in the added IGP amount, as follows: Y0 (not containing IGP), YG15 (containing 15 g per 100 mL of IGP), YG20 (containing 20 g per 100 mL of IGP), and YG25 (containing 25 g per 100 mL of IGP). All formulations showed probiotic counts ranging from 7 to 8 log CFU mL-1 over the assessed storage period. The addition of 20 g per 100 mL of IGP affected positively the colour, viscosity, and sensory acceptance of the yogurt formulations. The production of goat milk yogurt containing L. acidophilus LA-05 and IGP is an option for developing a new goat dairy product with added value due to the inclusion of components with potential functional properties.


Assuntos
Aditivos Alimentares/análise , Leite/microbiologia , Probióticos/análise , Vitis/química , Iogurte/análise , Iogurte/microbiologia , Animais , Fermentação , Aditivos Alimentares/metabolismo , Manipulação de Alimentos , Cabras , Humanos , Lactobacillus acidophilus/metabolismo , Leite/química , Paladar , Vitis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...