Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Light Sci Appl ; 13(1): 100, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693126

RESUMO

Photoacoustic spectroscopy (PAS) as a highly sensitive and selective trace gas detection technique has extremely broad application in many fields. However, the laser sources currently used in PAS limit the sensing performance. Compared to diode laser and quantum cascade laser, the solid-state laser has the merits of high optical power, excellent beam quality, and wide tuning range. Here we present a long-wave, high-power, wide-tunable, single-longitudinal-mode solid-state laser used as light source in a PAS sensor for trace gas detection. The self-built solid-state laser had an emission wavelength of ~2 µm with Tm:YAP crystal as the gain material, with an excellent wavelength and optical power stability as well as a high beam quality. The wide wavelength tuning range of 9.44 nm covers the absorption spectra of water and ammonia, with a maximum optical power of ~130 mW, allowing dual gas detection with a single laser source. The solid-state laser was used as light source in three different photoacoustic detection techniques: standard PAS with microphone, and external- and intra-cavity quartz-enhanced photoacoustic spectroscopy (QEPAS), proving that solid-state laser is an attractive excitation source in photoacoustic spectroscopy.

2.
Light Sci Appl ; 13(1): 77, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38514679

RESUMO

The extension of dual-comb spectroscopy (DCS) to all wavelengths of light along with its ability to provide ultra-large dynamic range and ultra-high spectral resolution, renders it extremely useful for a diverse array of applications in physics, chemistry, atmospheric science, space science, as well as medical applications. In this work, we report on an innovative technique of quartz-enhanced multiheterodyne resonant photoacoustic spectroscopy (QEMR-PAS), in which the beat frequency response from a dual comb is frequency down-converted into the audio frequency domain. In this way, gas molecules act as an optical-acoustic converter through the photoacoustic effect, generating heterodyne sound waves. Unlike conventional DCS, where the light wave is detected by a wavelength-dependent photoreceiver, QEMR-PAS employs a quartz tuning fork (QTF) as a high-Q sound transducer and works in conjunction with a phase-sensitive detector to extract the resonant sound component from the multiple heterodyne acoustic tones, resulting in a straightforward and low-cost hardware configuration. This novel QEMR-PAS technique enables wavelength-independent DCS detection for gas sensing, providing an unprecedented dynamic range of 63 dB, a remarkable spectral resolution of 43 MHz (or ~0.3 pm), and a prominent noise equivalent absorption of 5.99 × 10-6 cm-1·Hz-1/2.

3.
Opt Express ; 32(1): 987-1002, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38175118

RESUMO

In this paper, an end-to-end methane gas detection algorithm based on transformer and multi-layer perceptron (MLP) for tunable diode laser absorption spectroscopy (TDLAS) is presented. It consists of a Transformer-based U-shaped Neural Network (TUNN) filtering algorithm and a concentration prediction network (CPN) based on MLP. This algorithm employs an end-to-end architectural design to extract information from noisy transmission spectra of methane and derive the CH4 concentrations from denoised spectra, without intermediate steps. The results demonstrate the superiority of the proposed TUNN filtering algorithm over other typically employed digital filters. For concentration prediction, the determination coefficient (R2) reached 99.7%. Even at low concentrations, R2 remained notably high, reaching up to 89%. The proposed algorithm results in a more efficient, convenient, and accurate spectral data processing for TDLAS-based gas sensors.

4.
Photoacoustics ; 35: 100577, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38149035

RESUMO

In this work, we report on the novel employment of lithium niobate tuning forks as acoustic transducers in photoacoustic spectroscopy for gas sensing. The lithium niobate tuning fork (LiNTF) exhibits a fundamental resonance frequency of 39196.6 Hz and a quality factor Q = 5900 at atmospheric pressure. The possibility to operate the LiNTF as a photoacoustic wave detector was demonstrated targeting a water vapor absorption line falling at 7181.14 cm-1 (1.39 µm). A noise equivalent concentration of 2 ppm was reached with a signal integration time of 20 s. These preliminary results open the path towards integrated photonic devices for gas sensing with LiNTF-based detectors on lithium niobate platforms.

5.
Photoacoustics ; 33: 100557, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38021284

RESUMO

We present a quartz enhanced photoacoustic spectroscopy (QEPAS) gas sensor designed for precise monitoring of ammonia (NH3) at ppb-level concentrations. The sensor is based on a novel custom quartz tuning fork (QTF) with a mid-infrared quantum cascade laser emitting at 9.55 µm. The custom QTF with a hammer-shaped prong geometry which is also modified by surface grooves is designed as the acoustic transducer, providing a low resonance frequency of 9.5 kHz and a high-quality factor of 10263 at atmospheric pressure. In addition, a temperature of 50 °C and a large gas flow rate of 260 standard cubic centimeters per minute (sccm) are applied to mitigate the adsorption and desorption effect arising from the polarized molecular of NH3. With 80-mW optical power and 300-ms lock-in integration time, the detection limit is achieved to be 2.2 ppb which is the best value reported in the literature so far for NH3 QEPAS sensors, corresponding to a normalized noise equivalent absorption coefficient of 1.4 × 10-8 W cm-1 Hz-1/2. A five-day continuous monitoring for atmospheric NH3 is performed, verifying the stability and robustness of the presented QEPAS-based NH3 sensor.

6.
Photoacoustics ; 33: 100553, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38021294

RESUMO

We present an optical sensor based on light-induced thermoelastic spectroscopy for the detection of hydrogen sulfide (H2S) in sulfur hexafluoride (SF6). The sensor incorporates a compact multi-pass cell measuring 6 cm × 4 cm × 4 cm and utilizes a quartz tuning fork (QTF) photodetector. A 1.58 µm near-infrared distributed feedback (DFB) laser with an optical power of 30 mW serves as the excitation source. The sensor achieved a minimum detection limit (MDL) of ∼300 ppb at an integration time of 300 ms, corresponding to a normalized noise equivalent absorption coefficient (NNEA) of 3.96 × 10-9 W·cm-1·Hz-1/2. By extending the integration time to 100 s, the MDL can be reduced to ∼25 ppb. The sensor exhibits a response time of ∼1 min for a gas flow rate of 70 sccm.

7.
Photoacoustics ; 31: 100518, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37325395

RESUMO

Here we report on a study of the non-radiative relaxation dynamic of 12CH4 and 13CH4 in wet nitrogen-based matrixes by using the quartz-enhanced photoacoustic spectroscopy (QEPAS) technique. The dependence of the QEPAS signal on pressure at fixed matrix composition and on H2O concentration at fixed pressure was investigated. We demonstrated that QEPAS measurements can be used to retrieve both the effective relaxation rate in the matrix, and the V-T relaxation rate associated to collisions with nitrogen and water vapor. No significant differences in measured relaxation rates were observed between the two isotopologues.

8.
Photoacoustics ; 31: 100479, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37255964

RESUMO

In this work, a comparison between Quartz Enhanced Photoacoustic Spectroscopy (QEPAS) and Beat Frequency-QEPAS (BF-QEPAS) techniques for environmental monitoring of pollutants is reported. A spectrophone composed of a T-shaped Quartz Tuning Fork (QTF) coupled with resonator tubes was employed as a detection module. An interband cascade laser has been used as an exciting source, allowing the targeting of two NO absorption features, located at 1900.07 cm-1 and 1900.52 cm-1, and a water vapor absorption feature, located at 1901.76 cm-1. Minimum detection limits of 90 ppb and 180 ppb were achieved with QEPAS and BF-QEPAS techniques, respectively, for NO detection. The capability to detect multiple components in the same gas mixture using BF-QEPAS was also demonstrated.

9.
Opt Lett ; 48(3): 562-565, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36723531

RESUMO

In this Letter, a side-excitation light-induced thermoelastic spectroscopy (SE-LITES) technique was developed for trace gas detection. A novel, to the best of our knowledge, custom quartz tuning fork (QTF) was used as a transducer for photon detection by the thermoelastic effect. The mechanical stress distribution on the QTF surface was analyzed to identify the optimum thermoelastic excitation approach. The electrode film on the QTF surface also works as a partially reflective layer to obtain a long optical absorption path inside the QTF body. With the long optical absorption length and the inner face excitation of the QTF, the thermoelastic effect was greatly enhanced. With an optimized modulation depth, a signal-to-noise ratio (SNR) improvement of more than one order of magnitude was achieved, compared to traditional LITES.

10.
Photoacoustics ; 29: 100448, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36654961

RESUMO

A gas sensor based on light-induced thermo-elastic spectroscopy (LITES) capable to detect methane (C1) and ethane (C2) in a wide concentration range, from percent down to part-per-billion (ppb), is here reported. A novel approach has been implemented, exploiting a compact sensor design that accommodates both a custom 9.8 kHz quartz tuning fork (QTF) used as photodetector and the gas sample in the same housing. The resulting optical pathlength was only 2.5 cm. An interband cascade laser (ICL) with emission wavelength of 3.345 µm was used to target absorption features of C1 and C2. The effects of high concentration analytes on sensor response were firstly investigated. C1 concentration varied from 1% to 10%, while C2 concentration varied from 0.1% to 1%. These ranges were selected to retrace the typical natural gas composition in a 1:10 nitrogen dilution. The LITES sensor was calibrated for both the gas species independently and returned nonlinear but monotonic responses for the two analytes. These univariate calibrations were used to retrieve the composition of C1-C2 binary mixtures with accuracy higher than 98%, without the need for further data analysis. Minimum detection limits of ∼650 ppb and ∼90 ppb were achieved at 10 s of integration time for C1 and C2, respectively, demonstrating the capability of the developed LITES sensor to operate with concentration ranges spanning over 6 orders of magnitude.

11.
Photoacoustics ; 29: 100436, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36570473

RESUMO

We report on the development of a highly sensitive hydrogen sulfide (H2S) gas sensor exploiting the doubly resonant photoacoustic spectroscopy technique and using a near-infrared laser emitting at 1578.128 nm. By targeting the R(4) transition of H2S, we achieved a minimum detection limit of 10 part per billion in concentration and a normalized noise equivalent absorption coefficient of 8.9 × 10-12 W cm-1 Hz-1/2. A laser-cavity-molecule locking strategy is proposed to enhance the sensor stability for fast measurement when dealing with external disturbances. A comparison among the state-of-the-art H2S sensors using various spectroscopic techniques confirmed the record sensitivity achieved in this work.

12.
Photoacoustics ; 29: 100438, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36582842

RESUMO

The increase in fatal accidents and chronic illnesses caused by hydrogen sulfide (H2S) exposure occurring in various workplaces is pushing the development of sensing systems for continuous and in-field monitoring of this hazardous gas. We report here on the design and realization of a Near-IR quartz-enhanced photoacoustic sensor (QEPAS) for H2S leaks detection. H2S QEPAS signal was measured in matrixes containing up to 1 % of methane (CH4) and nitrogen (N2) which were chosen as the laboratory model environment for leakages from oil and gas wells or various industrial processes where H2S and CH4 can leak simultaneously. An investigation of the influence of CH4 on H2S relaxation and photoacoustic generation was proposed in this work and the sensor performances were carefully assessed with respect to CH4 content in the mixture. We demonstrated the high selectivity, with no cross talk between H2S, H2O and CH4 absorption lines, high sensitivity, and fast response time of the developed sensor, achieving a minimum detection limit (MDL) of 2.5 ppm for H2S with 2 s lock-in integration time. The employed 2.6 µm laser allowed us to employ the sensor also for CH4 detection, achieving an MDL of 85 ppm. The realized QEPAS sensor lends itself to the development of a portable and compact device for industrial monitoring.

13.
Molecules ; 27(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36235042

RESUMO

A photoacoustic detection module based on a gold-plated photoacoustic cell was reported in this manuscript to measure hydrogen sulfide (H2S) gas in sewers. A 1582 nm distributed feedback (DFB) diode laser was employed as the excitation light source of the photoacoustic sensor. Operating pressure within the photoacoustic cell and laser modulation depth were optimized at room temperature, and the long-term stability of the photoacoustic sensor system was analyzed by an Allan-Werle deviation analysis. Experimental results showed that under atmospheric pressure and room temperature conditions, the photoacoustic detection module exhibits a sensitivity of 11.39 µV/ppm of H2S and can reach a minimum detection limit (1σ) of 140 ppb of H2S with an integration time of 1 s. The sensor was tested for in-field measurements by sampling gas in the sewer near the Shanxi University canteen: levels of H2S of 81.5 ppm were measured, below the 100 ppm limit reported by the Chinese sewer bidding document.


Assuntos
Sulfeto de Hidrogênio , Érbio , Ouro , Humanos , Sulfeto de Hidrogênio/análise , Lasers Semicondutores , Análise Espectral/métodos
14.
Opt Lett ; 47(17): 4556-4559, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36048703

RESUMO

In this Letter, clamp-type quartz tuning fork enhanced photoacoustic spectroscopy (Clamp-type QEPAS) is proposed and realized through the design, realization, and testing of clamp-type quartz tuning forks (QTFs) for photoacoustic gas sensing. The clamp-type QTF provides a wavefront-shaped aperture with a diameter up to 1 mm, while keeping Q factors > 104. This novel, to the best of our knowledge, design results in a more than ten times increase in the area available for laser beam focusing for the QEPAS technique with respect to a standard QTF. The wavefront-shaped clamp-type prongs effectively improve the acoustic wave coupling efficiency. The possibility to implement a micro-resonator system for clamp-type QTF is also investigated. A signal-to-noise enhancement of ∼30 times has been obtained with a single-tube acoustic micro resonator length of 8 mm, ∼20% shorter than the dual-tube micro-resonator employed in a conventional QEPAS system.


Assuntos
Quartzo , Quartzo/química , Análise Espectral/métodos
15.
Photoacoustics ; 27: 100381, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36068798

RESUMO

In this paper, an ultra-highly sensitive light-induced thermoelastic spectroscopy (LITES) based hydrogen chloride (HCl) sensor, exploiting a custom low-frequency quartz tuning fork (QTF) and a fiber-coupled multi-pass cell (MPC) with optical length of 40 m, was demonstrated. A low resonant frequency of 2.89 kHz of QTF is advantageous to produce a long energy accumulation time in LITES. Furthermore, the use of an MPC with the fiber-coupled structure not only avoids the difficulty in optical alignment but also enhances the system robustness. A distributed feedback (DFB) diode laser emitting at 1.74 µm was used as the excitation source. Under the same operating conditions, the using of low-frequency QTF provided a ~2 times signal improvement compared to that achieved using a standard 32 kHz QTF. At an integration time of 200 ms, a minimum detection limit (MDL) of 148 ppb was achieved. The reported sensor also shows an excellent linear response to HCl gas concentration in the investigated range.

16.
Photoacoustics ; 27: 100387, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36068805

RESUMO

Photoacoustic spectroscopy (PAS) based gas sensors with high sensitivity, wide dynamic range, low cost, and small footprint are desirable in energy, environment, safety, and public health. However, most works have focused on either acoustic resonator to enhance acoustic wave or optical resonator to enhance optical wave. Herein, we develop a gas sensor based on doubly resonant PAS in which the acoustic and optical waves are simultaneously enhanced using combined optical and acoustic resonators in a centimeter-long configuration. Not only the lower detection limit is enhanced by the double standing waves, but also the upper detection limit is expanded due to the short resonators. As an example, we developed a sensor by detecting acetylene (C2H2), achieving a noise equivalent absorption of 5.7 × 10-13 cm-1 and a dynamic range of eight orders. Compared to the state-of-the-art PAS gas sensors, the developed sensor achieves a record sensitivity and dynamic range.

17.
Photoacoustics ; 28: 100401, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36105377

RESUMO

We report on a gas sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS) able to detect multiple gas species for environmental monitoring applications, by exploiting a Vernier effect-based quantum cascade laser as the excitation source. The device emission spectrum consists of ten separated emission clusters covering the range from 2100 up to 2250 cm-1. Four clusters were selected to detect the absorption features of carbon monoxide (CO), nitrous oxide (N2O), carbon dioxide (CO2), and water vapor (H2O), respectively. The sensor was calibrated with certified concentrations of CO, N2O and CO2 in a wet nitrogen matrix. The H2O absorption feature was used to monitor the water vapor within the gas line during the calibration. Minimum detection limits of 6 ppb, 7 ppb, and 70 ppm were achieved for CO, N2O and CO2, respectively, at 100 ms of integration time. As proof of concept, the QEPAS sensor was tested by continuously sampling indoor laboratory air and monitoring the analytes concentrations.

18.
Photoacoustics ; 26: 100363, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35574186

RESUMO

A sensor system for exhaled ammonia (NH3) monitoring exploiting quartz-enhanced photoacoustic spectroscopy (QEPAS) was demonstrated. An erbium-doped fiber amplifier (EDFA) with an operating frequency band targeting an NH3 absorption line falling at 1531.68 nm and capable to emit up to 3 W of optical power was employed. A custom T-shaped grooved QTF with prong spacing of 1 mm was designed and realized to allow a proper focusing of the high-power optical beam exiting the EDFA between the prongs. The performance of the realized sensor system was optimized in terms of spectrophone parameters, laser power and modulation current, resulting in a NH3 minimum detectable concentration of 14 ppb at 1 s averaging time, corresponding to a normalized noise equivalent absorption coefficient (NNEA) of 8.15 × 10-9 cm-1 W/√Hz. Continuous measurements of the NH3 level exhaled by 3 healthy volunteers was carried out to demonstrate the potentiality of the developed sensor for breath analysis applications.

19.
Anal Chim Acta ; 1202: 338894, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35341511

RESUMO

Multi-gas detection represents a suitable solution in many applications, such as environmental and atmospheric monitoring, chemical reaction and industrial process control, safety and security, oil&gas and biomedicine. Among optical techniques, Quartz-Enhanced Photoacoustic Spectroscopy (QEPAS) has been demonstrated to be a leading-edge technology for addressing multi-gas detection, thanks to the modularity, ruggedness, portability and real time operation of the QEPAS sensors. The detection module consists in a spectrophone, mounted in a vacuum-tight cell and detecting sound waves generated via photoacoustic excitation within the gas sample. As a result, the sound detection is wavelength-independent and the volume of the absorption cell is basically determined by the spectrophone dimensions, typically in the order of few cubic centimeters. In this review paper, the implementation of the QEPAS technique for multi-gas detection will be discussed for three main areas of applications: i) multi-gas trace sensing by exploiting non-interfering absorption features; ii) multi-gas detection dealing with overlapping absorption bands; iii) multi-gas detection in fluctuating backgrounds. The fundamental role of the analysis and statistical tools will be also discussed in detail in relation with the specific applications. This overview on QEPAS technique, highlighting merits and drawbacks, aims at providing ready-to-use guidelines for multi-gas detection in a wide range of applications and operating conditions.


Assuntos
Técnicas Fotoacústicas , Quartzo , Técnicas Fotoacústicas/métodos , Quartzo/química , Análise Espectral/métodos
20.
Photoacoustics ; 26: 100349, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35345809

RESUMO

A quartz enhanced photoacoustic spectroscopy (QEPAS) sensor capable to detect high concentrations of methane (C1) and ethane (C2) is here reported. The hydrocarbons fingerprint region around 3 µm was exploited using an interband cascade laser (ICL). A standard quartz tuning fork (QTF) coupled with two resonator tubes was used to detect the photoacoustic signal generated by the target molecules. Employing dedicated electronic boards to both control the laser source and collect the QTF signal, a shoe-box sized QEPAS sensor was realized. All the generated mixtures were downstream humidified to remove the influence of water vapor on the target gases. Several natural gas-like samples were generated and subsequently diluted 1:10 in N2. In the concentration ranges under investigation (1%-10% for C1 and 0.1%-1% for C2), both linear and nonlinear responses of the sensor were measured and signal variations due to matrix effects were observed. Partial least squares regression (PLSR) was employed as a multivariate statistical tool to accurately determine the concentrations of C1 and C2 in the mixtures, compensating the matrix relaxation effects. The achieved results extend the range of C1 and C2 concentrations detectable by QEPAS technique up to the percent scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...