Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36905054

RESUMO

We propose coating side-polished optical fiber (SPF) with epoxy polymer to form a fiber-optic sensor for cryogenic temperature measuring applications. The thermo-optic effect of the epoxy polymer coating layer enhances the interaction between the SPF evanescent field and surrounding medium, considerably improving the temperature sensitivity and robustness of the sensor head in a very low-temperature environment. In tests, due to the evanescent field-polymer coating interlinkage, transmitted optical intensity variation of 5 dB and an average sensitivity of -0.024 dB/K were obtained in the 90-298 K range.

2.
Appl Opt ; 57(3): 492-497, 2018 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-29400799

RESUMO

A polymer-coated fiber Bragg grating (PCFBG) is examined for real-time temperature and strain monitoring in composite materials at cryogenic temperatures. The proposed sensor enables the simultaneous measurement of temperature and strain at extremely low temperatures by tracking the changes in the reflected center wavelengths from a pair of PCFBGs embedded in a composite material. The cryogenic temperature sensing was realized by introducing polymer coatings onto bare FBGs, which resulted in high temperature sensitivity under cryogenic conditions. A comparison of wavelength responses of the Bragg grating with and without a polymer coating toward temperatures ranging from 25°C to -180°C was performed. The polymer-coated FBG exhibited a sensitivity of 48 pm/°C, which is 10 times greater than that of the bare FBGs. In addition, the encapsulation of the FBG in a capillary tube made it possible to evaluate the strain accumulated within the composite during operation under cryogenic conditions.

3.
Sensors (Basel) ; 15(8): 18579-86, 2015 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-26230700

RESUMO

Fiber Bragg grating sensors are placed in a fiber-optic Sagnac loop to combine the grating temperature sensors and the fiber-optic mandrel acoustic emission sensors in single optical circuit. A wavelength-scanning fiber-optic laser is used as a common light source for both sensors. A fiber-optic attenuator is placed at a specific position in the Sagnac loop in order to separate buried Bragg wavelengths from the Sagnac interferometer output. The Bragg wavelength shifts are measured with scanning band-pass filter demodulation and the mandrel output is analyzed by applying a fast Fourier transform to the interference signal. This hybrid-scheme could greatly reduce the size and the complexity of optical circuitry and signal processing unit, making it suitable for low cost multi-stress monitoring of large scale power systems.

4.
Sensors (Basel) ; 15(8): 18229-38, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26225970

RESUMO

A fiber-optic cure monitoring system is proposed to measure curing status of composite structure such as a large scale wind turbine blade. The monitoring is based on the measurement of Fresnel reflectivity at the optical fiber/epoxy resin interface. The refractive index of epoxy resin varies throughout curing stages, changing the Fresnel reflectivity. The curing status is decided by monitoring the reflected intensity variation. The usage of fiber Bragg grating (FBG) sensor helps to separate the temperature-induced cross effects. A Gaussian curve fitting algorithm was applied to FBG spectra which were distorted in curing procedure. The substantial measurement errors could be minimized by locating the centroids of the Gaussian curve-fitted spectra. From the experiments performed in various isothermal conditions, the proposed system successfully identified the onset of gelation and the completion of curing of epoxy resins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA