Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MethodsX ; 12: 102552, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38299041

RESUMO

The Partially Observable Markov Decision Process (POMDP), a mathematical framework for decision-making in uncertain environments suffers from the curse of dimensionality. There are various methods that can handle huge sizes of POMDP matrices to create approximate solutions, but no serious effort has been reported to effectively control the size of the POMDP matrices. Manually creating the high-dimension matrices of a POMDP model is a cumbersome and sometimes even impossible task. The PCMRPP (POMDP file Creator for Mobile Robot Path Planning) software package implements a novel algorithm to programmatically generate these matrices such that: •The sizes of the matrices can be controlled by configuring the granularity of discretization of the components of the state and•The sparseness of the matrices can be controlled by configuring the spread of the observation probability distribution. This kind of flexibility allows one to achieve a trade-off between time complexity and the level of robustness of the POMDP solution.

2.
Crit Rev Anal Chem ; : 1-12, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37358486

RESUMO

Since diagnostic laboratories handle large COVID-19 samples, researchers have established laboratory-based assays and developed biosensor prototypes. Both share the same purpose; to ascertain the occurrence of air and surface contaminations by the SARS-CoV-2 virus. However, the biosensors further utilize internet-of-things (IoT) technology to monitor COVID-19 virus contamination, specifically in the diagnostic laboratory setting. The IoT-capable biosensors have great potential to monitor for possible virus contamination. Numerous studies have been done on COVID-19 virus air and surface contamination in the hospital setting. Through reviews, there are abundant reports on the viral transmission of SARS-CoV-2 through droplet infections, person-to-person close contact and fecal-oral transmission. However, studies on environmental conditions need to be better reported. Therefore, this review covers the detection of SARS-CoV-2 in airborne and wastewater samples using biosensors with comprehensive studies in methods and techniques of sampling and sensing (2020 until 2023). Furthermore, the review exposes sensing cases in public health settings. Then, the integration of data management together with biosensors is well explained. Last, the review ended with challenges to having a practical COVID-19 biosensor applied for environmental surveillance samples.

3.
Nanomaterials (Basel) ; 13(9)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37177083

RESUMO

In this work, we present the generation of two distinct types of soliton pulses using a Bismuth Selenide (Bi2Se3) saturable absorber (SA) synthesized in our laboratory. The soliton pulses were generated in two different laser cavity configurations, resulting in two types of solitons: a soliton pulse with Kelly sidebands and a bunched soliton pulse with peak-dip sidebands. Both solitons operated at the fundamental repetition rate-23.3 MHz (for the soliton with Kelly sidebands) and 13 MHz (for the bunched soliton with peak-dip sidebands). We observed that the accumulation of nonlinear phase shift from the added single mode fiber (SMF) split the single soliton pulse into 44 pulses in a bunched oscillation envelope. At the same time, peak-dip sidebands were imposed on the bunched soliton spectrum due to constructive and destructive interferences between soliton pulse and dispersive waves. The measured pulse width for both solitons were 0.63 ps (for the soliton with Kelly sidebands) and 1.52 ps (for the bunched soliton with peak-dip sidebands), respectively. Our results demonstrate the potential of Bi2Se3 SAs in generating different types of soliton pulses, which could have potential applications in various areas of optical communication and spectroscopy.

4.
Micromachines (Basel) ; 10(2)2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30813276

RESUMO

This paper investigates micromachined antenna performance operating at 5 GHz for radio frequency (RF) energy harvesting applications by comparing different substrate materials and fabrication modes. The research aims to discover appropriate antenna designs that can be integrated with the rectifier circuit and fabricated in a CMOS (Complementary Metal-Oxide Semiconductor)-compatible process approach. Therefore, the investigation involves the comparison of three different micromachined antenna substrate materials, including micromachined Si surface, micromachined Si bulk with air gaps, and micromachined glass-surface antenna, as well as conventional RT/Duroid-5880 (Rogers Corp., Chandler, AZ, USA)-based antenna as the reference. The characteristics of the antennas have been analysed using CST-MWS (CST MICROWAVE STUDIO®-High Frequency EM Simulation Tool). The results show that the Si-surface micromachined antenna does not meet the parameter requirement for RF antenna specification. However, by creating an air gap on the Si substrate using a micro-electromechanical system (MEMS) process, the antenna performance could be improved. On the other hand, the glass-based antenna presents a good S11 parameter, wide bandwidth, VSWR (Voltage Standing Wave Ratio) ≤ 2, omnidirectional radiation pattern and acceptable maximum gain of >5 dB. The measurement results on the fabricated glass-based antenna show good agreement with the simulation results. The study on the alternative antenna substrates and structures is especially useful for the development of integrated patch antennas for RF energy harvesting systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...