Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Biotechnol ; 37(7): 803-809, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31267113

RESUMO

The ability to predict the impact of cis-regulatory sequences on gene expression would facilitate discovery in fundamental and applied biology. Here we combine polysome profiling of a library of 280,000 randomized 5' untranslated regions (UTRs) with deep learning to build a predictive model that relates human 5' UTR sequence to translation. Together with a genetic algorithm, we use the model to engineer new 5' UTRs that accurately direct specified levels of ribosome loading, providing the ability to tune sequences for optimal protein expression. We show that the same approach can be extended to chemically modified RNA, an important feature for applications in mRNA therapeutics and synthetic biology. We test 35,212 truncated human 5' UTRs and 3,577 naturally occurring variants and show that the model predicts ribosome loading of these sequences. Finally, we provide evidence of 45 single-nucleotide variants (SNVs) associated with human diseases that substantially change ribosome loading and thus may represent a molecular basis for disease.


Assuntos
Regiões 5' não Traduzidas , Biossíntese de Proteínas , RNA Mensageiro/genética , Sequência de Bases , Regulação da Expressão Gênica , Humanos , Modelos Genéticos , Pseudouridina/análogos & derivados , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Ribossomos
2.
Science ; 360(6385): 176-182, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29545511

RESUMO

To facilitate scalable profiling of single cells, we developed split-pool ligation-based transcriptome sequencing (SPLiT-seq), a single-cell RNA-seq (scRNA-seq) method that labels the cellular origin of RNA through combinatorial barcoding. SPLiT-seq is compatible with fixed cells or nuclei, allows efficient sample multiplexing, and requires no customized equipment. We used SPLiT-seq to analyze 156,049 single-nucleus transcriptomes from postnatal day 2 and 11 mouse brains and spinal cords. More than 100 cell types were identified, with gene expression patterns corresponding to cellular function, regional specificity, and stage of differentiation. Pseudotime analysis revealed transcriptional programs driving four developmental lineages, providing a snapshot of early postnatal development in the murine central nervous system. SPLiT-seq provides a path toward comprehensive single-cell transcriptomic analysis of other similarly complex multicellular systems.


Assuntos
Encéfalo/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Análise de Célula Única/métodos , Medula Espinal/crescimento & desenvolvimento , Transcriptoma , Animais , Núcleo Celular/genética , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Neurônios/metabolismo , Análise de Sequência de RNA
3.
Nucleic Acids Res ; 43(8): 4262-73, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25845597

RESUMO

Establishment of the early genetic code likely required strategies to ensure translational accuracy and inevitably involved tRNA post-transcriptional modifications. One such modification, wybutosine/wyosine is crucial for translational fidelity in Archaea and Eukarya; yet it does not occur in Bacteria and has never been described in mitochondria. Here, we present genetic, molecular and mass spectromery data demonstrating the first example of wyosine in mitochondria, a situation thus far unique to kinetoplastids. We also show that these modifications are important for mitochondrial function, underscoring their biological significance. This work focuses on TyW1, the enzyme required for the most critical step of wyosine biosynthesis. Based on molecular phylogeny, we suggest that the kinetoplastids pathways evolved via gene duplication and acquisition of an FMN-binding domain now prevalent in TyW1 of most eukaryotes. These findings are discussed in the context of the extensive U-insertion RNA editing in trypanosome mitochondria, which may have provided selective pressure for maintenance of mitochondrial wyosine in this lineage.


Assuntos
Guanosina/análogos & derivados , Mitocôndrias/enzimologia , RNA de Transferência/metabolismo , Trypanosoma brucei brucei/enzimologia , Guanosina/biossíntese , Guanosina/química , Guanosina/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Processamento Pós-Transcricional do RNA , RNA de Transferência/química , Trypanosoma brucei brucei/genética
4.
Nucleic Acids Res ; 43(10): e64, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25820423

RESUMO

Ribosomal ribonucleic acid (RNA), transfer RNA and other biological or synthetic RNA polymers can contain nucleotides that have been modified by the addition of chemical groups. Traditional Sanger sequencing methods cannot establish the chemical nature and sequence of these modified-nucleotide containing oligomers. Mass spectrometry (MS) has become the conventional approach for determining the nucleotide composition, modification status and sequence of modified RNAs. Modified RNAs are analyzed by MS using collision-induced dissociation tandem mass spectrometry (CID MS/MS), which produces a complex dataset of oligomeric fragments that must be interpreted to identify and place modified nucleosides within the RNA sequence. Here we report the development of RoboOligo, an interactive software program for the robust analysis of data generated by CID MS/MS of RNA oligomers. There are three main functions of RoboOligo: (i) automated de novo sequencing via the local search paradigm. (ii) Manual sequencing with real-time spectrum labeling and cumulative intensity scoring. (iii) A hybrid approach, coined 'variable sequencing', which combines the user intuition of manual sequencing with the high-throughput sampling of automated de novo sequencing.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Processamento Pós-Transcricional do RNA , Análise de Sequência de RNA/métodos , Software , Espectrometria de Massas em Tandem , Algoritmos , RNA Ribossômico/química , RNA Ribossômico/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo
5.
Mol Cell ; 52(2): 184-92, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-24095278

RESUMO

In cells, tRNAs are synthesized as precursor molecules bearing extra sequences at their 5' and 3' ends. Some tRNAs also contain introns, which, in archaea and eukaryotes, are cleaved by an evolutionarily conserved endonuclease complex that generates fully functional mature tRNAs. In addition, tRNAs undergo numerous posttranscriptional nucleotide chemical modifications. In Trypanosoma brucei, the single intron-containing tRNA (tRNA(Tyr)GUA) is responsible for decoding all tyrosine codons; therefore, intron removal is essential for viability. Using molecular and biochemical approaches, we show the presence of several noncanonical editing events, within the intron of pre-tRNA(Tyr)GUA, involving guanosine-to-adenosine transitions (G to A) and an adenosine-to-uridine transversion (A to U). The RNA editing described here is required for proper processing of the intron, establishing the functional significance of noncanonical editing with implications for tRNA processing in the deeply divergent kinetoplastid lineage and eukaryotes in general.


Assuntos
Íntrons/genética , Edição de RNA , Splicing de RNA , RNA de Transferência de Tirosina/genética , Trypanosoma brucei brucei/genética , Sequência de Aminoácidos , Sequência de Bases , Northern Blotting , Endorribonucleases/genética , Endorribonucleases/metabolismo , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Interferência de RNA , Precursores de RNA/genética , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , RNA de Transferência de Tirosina/química , RNA de Transferência de Tirosina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Trypanosoma brucei brucei/metabolismo
6.
RNA ; 19(5): 649-58, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23520175

RESUMO

All tRNAs undergo post-transcriptional chemical modifications as part of their natural maturation pathway. Some modifications, especially those in the anticodon loop, play important functions in translational efficiency and fidelity. Among these, 1-methylguanosine, at position 37 (m(1)G37) of the anticodon loop in several tRNAs, is evolutionarily conserved and participates in translational reading frame maintenance. In eukaryotes, the tRNA methyltransferase TRM5 is responsible for m(1)G formation in nucleus-encoded as well as mitochondria-encoded tRNAs, reflecting the universal importance of this modification for protein synthesis. However, it is not clear what role, if any, mitochondrial TRM5 serves in organisms that do not encode tRNAs in their mitochondrial genomes. These organisms may easily satisfy the m(1)G37 requirement through their robust mitochondrial tRNA import mechanisms. We have explored this possibility in the parasitic protist Trypanosoma brucei and show that down-regulation of TRM5 by RNAi leads to the expected disappearance of m(1)G37, but with surprisingly little effect on cytoplasmic translation. On the contrary, lack of TRM5 causes a marked growth phenotype and a significant decrease in mitochondrial functions, including protein synthesis. These results suggest mitochondrial TRM5 may be needed to mature unmethylated tRNAs that reach the mitochondria and that could pose a problem for translational fidelity. This study also reveals an unexpected lack of import specificity between some fully matured and potentially defective tRNA species.


Assuntos
Metiltransferases , Proteínas Mitocondriais , RNA de Transferência , Trypanosoma brucei brucei , Anticódon/química , Regulação para Baixo , Genoma Mitocondrial , Guanosina/análogos & derivados , Guanosina/genética , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Proteínas Mitocondriais/biossíntese , Proteínas Mitocondriais/metabolismo , Biossíntese de Proteínas , RNA de Transferência/química , RNA de Transferência/genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...