Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Nutr ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713231

RESUMO

PURPOSE: Obesity is a primary risk factor for knee osteoarthritis (OA). Prebiotics enhance beneficial gut microbes and can reduce body fat and inflammation. Our objective was to examine if a 6-month prebiotic intervention improved physical function in adults with knee osteoarthritis and obesity. We also measured knee pain, body composition, quality of life, gut microbiota, inflammatory markers, and serum metabolomics. METHODS: Adults (n = 54, mostly women) with co-morbid obesity (BMI > 30 kg/m2) and unilateral/bilateral knee OA were randomly assigned to prebiotic (oligofructose-enriched inulin; 16 g/day; n = 31) or isocaloric placebo (maltodextrin; n = 21) for 6 months. Performance based-tests, knee pain, quality of life, serum metabolomics and inflammatory markers, and fecal microbiota and short-chain fatty acids were assessed. RESULTS: Significant between group differences were detected for the change in timed-up-and-go test, 40 m fast paced walk test, and hand grip strength test from baseline that favored prebiotic over placebo. Prebiotic also reduced trunk fat mass (kg) at 6 months and trunk fat (%) at 3 months compared to placebo. There was a trend (p = 0.059) for reduced knee pain at 6 months with prebiotic versus placebo. In gut microbiota analysis, a total of 37 amplicon sequence variants differed between groups. Bifidobacterium abundance was positively correlated with distance walked in the 6-min walk test and hand grip strength. At 6 months, there was a significant separation of serum metabolites between groups with upregulation of phenylalanine and tyrosine metabolism with prebiotic. CONCLUSION: Prebiotics may hold promise for conservative management of knee osteoarthritis in adults with obesity and larger trials are warranted. CLINICAL TRIAL REGISTRATION: Clinicaltrials.gov/study/NCT04172688.

2.
Cancers (Basel) ; 14(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35681702

RESUMO

The gut microbiota plays a role in shaping overall host health and response to several cancer treatments. Factors, such as diet, exercise, and chemotherapy, can alter the gut microbiota. In the present study, the Alberta Cancer Exercise (ACE) program was investigated as a strategy to favorably modify the gut microbiota of breast cancer survivors who had received chemotherapy. Subsequently, the ability of post-exercise gut microbiota, alone or with prebiotic fiber supplementation, to influence breast cancer outcomes was interrogated using fecal microbiota transplant (FMT) in germ-free mice. While cancer survivors experienced little gut microbial change following ACE, in the mice, tumor volume trended consistently lower over time in mice colonized with post-exercise compared to pre-exercise microbiota with significant differences on days 16 and 22. Beta diversity analysis revealed that EO771 breast tumor cell injection and Paclitaxel chemotherapy altered the gut microbial communities in mice. Enrichment of potentially protective microbes was found in post-exercise microbiota groups. Tumors of mice colonized with post-exercise microbiota exhibited more favorable cytokine profiles, including decreased vascular endothelial growth factor (VEGF) levels. Beneficial microbial and molecular outcomes were augmented with prebiotic supplementation. Exercise and prebiotic fiber demonstrated adjuvant action, potentially via an enhanced anti-tumor immune response modulated by advantageous gut microbial shifts.

3.
FASEB J ; 36(5): e22269, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344215

RESUMO

Dietary fiber promotes a healthy gut microbiome and shows promise in attenuating the unfavorable microbial changes resulting from a high-fat/sucrose (HFS) diet. High-fiber diets consisting of oligofructose alone (HFS/O) or in combination with ß-glucan (HFS/OB), resistant starch (HFS/OR), or ß-glucan and resistant starch (HFS/OBR) were fed to diet-induced obese rats for 8 weeks to determine if these fibers could attenuate the obese phenotype. Only the HFS/O group displayed a decrease in body weight and body fat, but all fiber interventions improved insulin sensitivity and cognitive function. The HFS/O diet was the least effective at improving cognitive function and only the HFS/OB group showed improvements in glucose tolerance, thus highlighting the differential effects of fiber types. Hippocampal cytokines (IL-6, IL-10) were more pronounced in the HFS/OB group which coincided with the most time spend in the open arms of the elevated plus maze. All fiber groups showed an increase in beneficial Bifidobacterium and Lactobacillus abundance while the HFS group showed higher abundance of Clostridium. Fecal microbiota transplant from fiber-treated rats into germ-free mice did not alter body composition in the mice but did result in a higher abundance of Bacteroides in the HFS/O and HFS/OB groups compared to HFS. The HFS/OB recipient mice also had higher insulin sensitivity compared to the other groups. This study highlights the influence of dietary fiber type on metabolic and cognitive outcomes suggesting that the type of supplementation (single or combined fibers) could be tailored to specific targeted outcomes.


Assuntos
Resistência à Insulina , beta-Glucanas , Animais , Cognição , Dieta Hiperlipídica/efeitos adversos , Fibras na Dieta/farmacologia , Camundongos , Obesidade/metabolismo , Ratos , Amido Resistente , Sacarose
4.
Br J Nutr ; 128(10): 1906-1916, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-34963503

RESUMO

Early life nutrition fundamentally influences neonatal development and health. Human milk oligosaccharides (HMO) are key components of breast milk but not standard infant formula that support the establishment of the newborn gut microbiota. Using an artificial rearing system, our objective was to test the effect of two HMO on the whole body and organ growth, adiposity, glucose tolerance and faecal microbiota in young rat pups. From postnatal days 4 to 21, Sprague-Dawley rats were randomised to receive one of: (1) CTR (rat milk substitute); (2) 2'FL (CTR + 1·2 g/l 2'-fucosyllactose); (3) 3'SL (CTR + 1·2 g/l 3'-sialyllactose) and (4) 2'FL + 3'SL (CTR + 0·6 g/l 2'-FL + 0·6 g/l 3'-SL). Body weight (BW), bowel movements and food intake were monitored daily, faecal samples collected each week and oral glucose tolerance, body composition and organ weight measured at weaning. No significant differences were observed between groups in growth performance, body composition, organ weight and abundance of dominant faecal microbes. A decreased relative abundance of genus Proteus in week 1 faecal samples and Terrisporobacter in week 3 faecal samples (P < 0·05) was suggestive of a potential pathogen inhibitory effect of 3'SL. Longitudinal changes in the faecal microbiota of artificially reared suckling rats were primarily governed by age (P = 0·001) and not affected by the presence of 2'-FL and/or 3'-SL in rat milk substitutes (P = 0·479). Considering the known protective effects of HMO, further investigation of supplementation with these and other HMO in models of premature birth, extremely low BW or malnutrition may show more pronounced outcomes.


Assuntos
Leite Humano , Oligossacarídeos , Lactente , Feminino , Gravidez , Humanos , Animais , Ratos , Animais Recém-Nascidos , Ratos Sprague-Dawley , Oligossacarídeos/farmacologia , Suplementos Nutricionais
5.
Obesity (Silver Spring) ; 29(10): 1664-1675, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34464518

RESUMO

OBJECTIVE: The gut microbiota is a complex ecosystem that shapes host metabolism, especially in early life. Maternal vaginal and gut microbiota is vertically transmitted to offspring during natural birth. Offspring born by cesarean section (CS) do not receive these bacteria and exhibit higher obesity risk later in life. The objective of this study was to examine differences in obesity risk between offspring born naturally (NB) or by CS to lean/obese dams. METHODS: Lean and obese rat dams gave birth to offspring naturally or by CS. Offspring obesity risk was analyzed via body weight/composition, food intake, sucrose preference, gut microbiota, and gene expression in gut and brain tissues. RESULTS: Obese (O)+CS offspring showed greater weight gain and caloric intake but a reduction in hypothalamic agouti related neuropeptide, neuropeptide Y, and interleukin 1ß expression compared with O+NB offspring. Lean (L)+CS offspring had higher serum corticosterone concentration and reduced liver peroxisome proliferator-activated receptor γ expression compared with L+NB. O+CS offspring had long-term alterations to gut microbiota, including increased relative abundance of Faecalibaculum and reduced Muribaculaceae. CONCLUSIONS: Overall, CS alters obesity risk differentially based on maternal obesity status. Further studies looking at the risks of obesity associated with CS are needed, with special attention paid to maternal obesity status and gut microbiota.


Assuntos
Cesárea , Ecossistema , Animais , Dieta , Feminino , Humanos , Obesidade , Gravidez , Ratos , Aumento de Peso
6.
Int J Mol Sci ; 21(23)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287442

RESUMO

Breast cancer is the most frequently diagnosed cancer in women worldwide. The disease and its treatments exert profound effects on an individual's physical and mental health. There are many factors that impact an individual's risk of developing breast cancer, their response to treatments, and their risk of recurrence. The community of microorganisms inhabiting the gastrointestinal tract, the gut microbiota, affects human health through metabolic, neural, and endocrine signaling, and immune activity. It is through these mechanisms that the gut microbiota appears to influence breast cancer risk, response to treatment, and recurrence. A disrupted gut microbiota or state of 'dysbiosis' can contribute to a biological environment associated with higher risk for cancer development as well as contribute to negative treatment side-effects. Many cancer treatments have been shown to shift the gut microbiota toward dysbiosis; however, the microbiota can also be positively manipulated through diet, prebiotic and probiotic supplementation, and exercise. The objective of this review is to provide an overview of the current understanding of the relationship between the gut microbiota and breast cancer and to highlight potential strategies for modulation of the gut microbiota that could lead to improved clinical outcomes and overall health in this population.


Assuntos
Neoplasias da Mama/mortalidade , Neoplasias da Mama/terapia , Microbioma Gastrointestinal , Neoplasias da Mama/complicações , Tomada de Decisão Clínica , Terapia Combinada , Procedimentos Clínicos , Gerenciamento Clínico , Disbiose , Exercício Físico , Feminino , Humanos , Obesidade/complicações , Avaliação de Resultados em Cuidados de Saúde , Prognóstico , Melhoria de Qualidade , Sobrevivência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...