Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Rec ; 24(1): e202300247, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37933973

RESUMO

The high-temperature solid oxide fuel cells (SOFCs) are the most efficient and green conversion technology for electricity generation from hydrogen-based fuel as compared to conventional thermal power plants. Many efforts have been made to reduce the high operating temperature (>800 °C) to intermediate/low operating temperature (400 °C

2.
RSC Adv ; 12(50): 32459-32470, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36425683

RESUMO

A facile and low-cost pseudo successive ionic layer adsorption and reaction technique was used to deposit cadmium sulfide quantum dots (CdS QDs) on hierarchical nanoflower NiO to form an effective and intimate NiO/CdS p-n heterojunction system. The synthesized hierarchical p-n heterojunctions demonstrated effective photocatalytic activity due to the enhanced separation and transport of photogenerated charge carriers compared to standalone NiO. The dye degradation efficiency of optimized CdS QDs that form p-n heterojunctions was examined by rhodamine B and methylene blue dyes under UV-vis irradiation. The improved photocatalytic performance can be accredited to a large morphological surface, and the successful deposition of CdS QDs to form an active p-n junction for efficient charge separation and migration. The morphological, structural, optical, charge transfer and photocatalytic characteristics of synthesized hierarchical p-n junction photocatalyst were studied by scanning electron microscopy, UV-visible absorbance, X-ray diffraction, photoluminescence spectroscopy, electrochemical spectroscopy, and Fourier transform infrared spectra. Additionally, scavenging experiments were performed to find out the energetic species taking part in dye-degradation, and a rational reaction mechanism has been proposed.

3.
Cancers (Basel) ; 13(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34830924

RESUMO

BACKGROUND: Concern exists that the clinical trial populations differ from respective cancer populations in terms of their age distribution affecting the generalizability of the results, especially in underrepresented minorities. We hypothesized that the clinical trials that do not report race are likely to suffer from a higher degree of age disparity. METHODS: Food and Drug Administration (FDA) drug approvals from July 2007 to June 2019 were reviewed to identify oncology approvals, and trials with age details were selected. The outcomes studied were the weighted mean difference in age between the clinical trial population and real-world population for various cancers, the prevalence of race reporting and association of age and race reporting with each other. RESULTS: Of the 261 trials, race was reported in 223 (85.4%) of the trials, while 38 trials (14.6%) had no mention of race. Race reporting improved minimally over time: 29 (85.3%) in 2007-2010 vs. 49 (80.3%) in 2011-2014 vs. 145 (85.4%) during the period 2015-2019 (p-value = 0.41). Age discrepancy between the clinical trial population and the real-world population was higher for studies that did not report race (mean difference -8.8 years (95% CI -12.6 to -5.0 years)) vs. studies that did report it (mean difference -5.1 years, (95% CI -6.4 to -3.7 years), p-value = 0.04). CONCLUSION: The study demonstrates that a significant number of clinical trials leading to cancer drug approvals suffer from racial and age disparity when compared to real-world populations, and that the two factors may be interrelated. We recommend continued efforts to recruit diverse populations.

4.
Ophthalmic Genet ; 41(6): 563-569, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32940104

RESUMO

BACKGROUND: Autosomal Dominant Optic Atrophy (ADOA) is caused by mutations in the Optic Atrophy 1 Gene which disrupts the OPA1 protein. This disruption affects the normal function of the protein; impairs fusion of the mitochondrial inner membrane; and prevents normal OPA1 protein degradation. These events cause damage in retinal ganglion cells that could affect the patients with symptoms ranging from none to legally blind. MATERIALS AND METHODS: Our study identifies a missense variant mutation, c.1024 A > G (p.K342E), in OPA1 gene causing ADOA. Diagnosed clinically in three family members and the presence of this mutation was confirmed in two members by genetic testing. Pathogenic variants in OPA1 impact the secondary protein structure and function by causing non-conservative amino acid substitutions. We also modeled this mutation and compared it to the wild type using statistical mechanics. RESULTS AND CONCLUSIONS: The proband's pathogenic variant, c.1024 A > G (p.K342E), is located in the GTPase domain of OPA1 and causes changes in the protein structure by affecting the oligomerization pattern thus resulting in ADOA. Identifying the pathogenic potential of the missense mutations in the OPA1 gene using neoteric protein modeling techniques would help in the early detection of ADOA in patients who have family history of blindness. This action would help in providing early follow up, possible treatment in the future, and genetic counseling. Abbreviations: ADOA: Autosomal Dominant Optic Atrophy; CYCS: Caspase Activator Cytochrome C; OPA1: Optic Atrophy Gene 1; RGC: Retinal Ganglion Cells; VUS: Variant of Uncertain Significance.


Assuntos
GTP Fosfo-Hidrolases/genética , Mutação de Sentido Incorreto , Atrofia Óptica Autossômica Dominante/genética , Atrofia Óptica Autossômica Dominante/patologia , Adulto , Feminino , Genômica , Humanos , Masculino , Linhagem
5.
Case Rep Med ; 2020: 5108052, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655646

RESUMO

We describe the phenotype of a patient with extensive aortic, carotid, and abdominal dissections. The proband was found to have a heterozygous deletion of exons 21-34 in MYLK, which is a rare finding, as deletions in this gene have been infrequently reported. We describe this finding following detection in a proband with an extensive history of aortic, carotid, and abdominal dissections. Neoteric molecular modeling techniques to help determine the impact of this deletion on protein function indicated loss of function due to lack of any kinase domain. We also provide the electrostatics calculations from the wild type and mutant variant. Through a combined multiomic approach of clinical, functional, and protein informatics, we arrive at a data fusion for determination of pathogenicity embedded within the genetic code for this particular genetic variant, which, as a platform, continues to broaden its scope across the field of variants of uncertain significance classification.

6.
Appl Opt ; 59(2): 463-468, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32225332

RESUMO

Airborne particulate matter has become an emerging issue globally due to environmental degradation and the health risk it causes. Volatilization of weakly adsorbed particles onto quartz filter paper (QFP) limits its performance. The adsorption of particulate matter (PM10) onto QFP coated with different concentrations of graphene oxide (GO) was investigated to enhance the adsorption potential. Hummer's method was adopted to synthesize GO. QFPs were coated with different concentrations of GO using a spin coating technique to optimize the result. The morphology and microstructure of GO-QFP were characterized by various experimental techniques, like XRD, FTIR, EDX, and SEM. GO showed considerable affinity to aerosol particles for GO-QFP weighing 5 mg/ml, whereas adsorption of the coated samples before and after was significantly reduced. The high affinity to aerosol particles was due to dominated π-π interactions and the grooved regions formed on the GO layer. It was considered that the high surface to volume ratio of GO-QFP improves the adsorptive property of the QF and consequently enhances the performance of the filter paper.

7.
Case Rep Genet ; 2020: 3256539, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32047678

RESUMO

BACKGROUND: The ATP-binding cassette, subfamily D, member 1 (ABCD1) protein is a peroxisomal half-transporter that allows for very long chain fatty acid (VLCFA) degradation. Pathogenic variants of ABCD1 cause VLCFAs to build up in various tissues and bodily fluids, resulting in a disorder called X-linked adrenoleukodystrophy (X-ALD). This disorder is most commonly marked by adrenocortical insufficiency and high VLCFA concentration, and has varying levels of neurological involvement depending on phenotype. For example, the Addison-only form of X-ALD has no neurological impact, while the cerebral form of X-ALD often causes severe sensory loss, motor function impairment, cognitive decline, and death. METHODS: A newly characterized and suspected pathogenic variant in ABCD1 cause VLCFAs to build up in various tissues and bodily fluids, resulting in a disorder called X-linked adrenoleukodystrophy (X-ALD). This disorder is most commonly marked by adrenocortical insufficiency and high VLCFA concentration, and has varying levels of neurological involvement depending on phenotype. For example, the Addison-only form of X-ALD has no neurological impact, while the cerebral form of X-ALD often causes severe sensory loss, motor function impairment, cognitive decline, and death. RESULTS: A case of adult onset adrenomyeloneuropathy (AMN) and a novel ABCD1 cause VLCFAs to build up in various tissues and bodily fluids, resulting in a disorder called X-linked adrenoleukodystrophy (X-ALD). This disorder is most commonly marked by adrenocortical insufficiency and high VLCFA concentration, and has varying levels of neurological involvement depending on phenotype. For example, the Addison-only form of X-ALD has no neurological impact, while the cerebral form of X-ALD often causes severe sensory loss, motor function impairment, cognitive decline, and death. CONCLUSIONS: Data fusion from multiple sources was combined in a comprehensive approach yielding an enriched assessment of the patient's disease and prognosis. Molecular modeling was performed on the variant to better characterize its clinical significance and confirm pathogenicity.

8.
Medicina (Kaunas) ; 55(5)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31096651

RESUMO

Background and objectives: Loeys-Dietz syndrome 3, also known as aneurysms--osteoarthritis syndrome, is an autosomal dominant genetic connective tissue disease caused by pathogenic variants in SMAD3, a transcription factor involved in TGF-ß signaling. This disorder is characterized by early-onset osteoarthritis and arterial aneurysms. Common features include scoliosis, uvula abnormalities, striae, and velvety skin. Materials and Methods: The pathogenicity of a variant of uncertain significance in the SMAD3 gene was evaluated (variant c.220C > T) through personalized protein informatics and molecular studies. Results: The case of a 44-year-old male, who was originally presumed to have Marfan syndrome, is presented. An expanded gene panel determined the probable cause to be a variant in SMAD3, c.220C > T (p.R74W). His case was complicated by a history of stroke, but his phenotype was otherwise characteristic for Loeys-Dietz syndrome 3. Conclusion: This case emphasizes the importance of comprehensive genetic testing to evaluate patients for connective tissue disorders, as well as the potential benefit of utilizing a protein informatics platform for the assessment of variant pathogenicity.


Assuntos
Síndrome de Loeys-Dietz/genética , Proteína Smad3/análise , Proteína Smad3/genética , Adulto , Genômica/métodos , Humanos , Síndrome de Loeys-Dietz/sangue , Masculino , Fenótipo , Proteína Smad3/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...