Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 12(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38397940

RESUMO

Saturated free fatty acids are thought to play a critical role in metabolic disorders associated with obesity, insulin resistance, type 2 diabetes (T2D), and their vascular complications via effects on the vascular endothelium. The most abundant saturated free fatty acid, palmitate, exerts lipotoxic effects on the vascular endothelium, eventually leading to cell death. Shear stress activates the endothelial AMP-activated protein kinase (AMPK), a cellular energy sensor, and protects endothelial cells from lipotoxicity, however their relationship is uncertain. Here, we used isoform-specific shRNA-mediated silencing of AMPK to explore its involvement in the long-term protection of macrovascular human umbilical vein endothelial cells (HUVECs) against palmitate lipotoxicity and to relate it to the effects of shear stress. We demonstrated that it is the α1 catalytic subunit of AMPK that is critical for HUVEC protection under static conditions, whereas AMPK-α2 autocompensated a substantial loss of AMPK-α1, but failed to protect the cells from palmitate. Shear stress equally protected the wild type HUVECs and those lacking either α1, or α2, or both AMPK-α isoforms; however, the protective effect of AMPK reappeared after returning to static conditions. Moreover, in human adipose microvascular endothelial cells isolated from obese diabetic individuals, shear stress was a strong protector from palmitate lipotoxicity, thus highlighting the importance of circulation that is often obstructed in obesity/T2D. Altogether, these results indicate that AMPK is important for vascular endothelial cell protection against lipotoxicity in the static environment, however it may be dispensable for persistent and more effective protection exerted by shear stress.

2.
Biochemistry (Mosc) ; 88(8): 1126-1138, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37758312

RESUMO

Hyperglycemia is a hallmark of type 2 diabetes implicated in vascular endothelial dysfunction and cardiovascular complications. Many in vitro studies identified endothelial apoptosis as an early outcome of experimentally modeled hyperglycemia emphasizing cell demise as a significant factor of vascular injury. However, endothelial apoptosis has not been observed in vivo until the late stages of type 2 diabetes. Here, we studied the long-term (up to 4 weeks) effects of high glucose (HG, 30 mM) on human umbilical vein endothelial cells (HUVEC) in vitro. HG did not alter HUVEC monolayer morphology, ROS levels, NO production, and exerted minor effects on the HUVEC apoptosis markers. The barrier responses to various clues were indistinguishable from those by cells cultured in physiological glucose (5 mM). Tackling the key regulators of cytoskeletal contractility and endothelial barrier revealed no differences in the histamine-induced intracellular Ca2+ responses, nor in phosphorylation of myosin regulatory light chain or myosin light chain phosphatase. Altogether, these findings suggest that vascular endothelial cells may well tolerate HG for relatively long exposures and warrant further studies to explore mechanisms involved in vascular damage in advanced type 2 diabetes.

3.
Int J Mol Sci ; 23(1)2021 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-35008640

RESUMO

Hyperlipidemia manifested by high blood levels of free fatty acids (FFA) and lipoprotein triglycerides is critical for the progression of type 2 diabetes (T2D) and its cardiovascular complications via vascular endothelial dysfunction. However, attempts to assess high FFA effects in endothelial culture often result in early cell apoptosis that poorly recapitulates a much slower pace of vascular deterioration in vivo and does not provide for the longer-term studies of endothelial lipotoxicity in vitro. Here, we report that palmitate (PA), a typical FFA, does not impair, by itself, endothelial barrier and insulin signaling in human umbilical vein endothelial cells (HUVEC), but increases NO release, reactive oxygen species (ROS) generation, and protein labeling by malondialdehyde (MDA) hallmarking oxidative stress and increased lipid peroxidation. This PA-induced stress eventually resulted in the loss of cell viability coincident with loss of insulin signaling. Supplementation with 5-aminoimidazole-4-carboxamide-riboside (AICAR) increased endothelial AMP-activated protein kinase (AMPK) activity, supported insulin signaling, and prevented the PA-induced increases in NO, ROS, and MDA, thus allowing to maintain HUVEC viability and barrier, and providing the means to study the long-term effects of high FFA levels in endothelial cultures. An upgraded cell-based model reproduces FFA-induced insulin resistance by demonstrating decreased NO production by vascular endothelium.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Endotélio Vascular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Palmitatos/metabolismo , Ribonucleotídeos/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Aminoimidazol Carboxamida/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Endotélio Vascular/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Insulina/metabolismo , Resistência à Insulina/fisiologia , Peroxidação de Lipídeos/efeitos dos fármacos , Malondialdeído/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
Oxid Med Cell Longev ; 2017: 1625130, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29098058

RESUMO

BACKGROUND: Malondialdehyde (MDA), glyoxal (GO), and methylglyoxal (MGO) levels increase in atherosclerosis and diabetes patients. Recent reports demonstrate that GO and MGO cause vascular endothelial barrier dysfunction whereas no evidence is available for MDA. METHODS: To compare the effects of MDA, GO, or MGO on endothelial permeability, we used human EA.hy926 endothelial cells as a standard model. To study cortical cytoplasm motility and cytoskeletal organization in endothelial cells, we utilized time-lapse microscopy and fluorescent microscopy. To compare dicarbonyl-modified protein band profiles in these cells, we applied Western blotting with antibodies against MDA- or MGO-labelled proteins. RESULTS: MDA (150-250 µM) irreversibly suppressed the endothelial cell barrier, reduced lamellipodial activity, and prevented intercellular contact formation. The motile deficiency of MDA-challenged cells was accompanied by alterations in microtubule and microfilament organization. These detrimental effects were not observed after GO or MGO (250 µM) administration regardless of confirmed modification of cellular proteins by MGO. CONCLUSIONS: Our comparative study demonstrates that MDA is more damaging to the endothelial barrier than GO or MGO. Considering that MDA endogenous levels exceed those of GO or MGO and tend to increase further during lipoperoxidation, it appears important to reduce oxidative stress and, in particular, MDA levels in order to prevent sustained vascular hyperpermeability in atherosclerosis and diabetes patients.


Assuntos
Aterosclerose/complicações , Diabetes Mellitus/sangue , Células Endoteliais/metabolismo , Complicações do Diabetes , Humanos , Permeabilidade
5.
J Pept Sci ; 22(11-12): 673-681, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27699916

RESUMO

Myosin light chain kinase (MLCK) is a key regulator of various forms of cell motility including smooth muscle contraction, cell migration, cytokinesis, receptor capping, secretion, etc. Inhibition of MLCK activity in endothelial and epithelial monolayers using cell-permeant peptide Arg-Lys-Lys-Tyr-Lys-Tyr-Arg-Arg-Lys (PIK, Peptide Inhibitor of Kinase) allows protecting the barrier capacity, suggesting a potential medical use of PIK. However, low stability of L-PIK in a biological milieu prompts for development of more stable L-PIK analogues for use as experimental tools in basic and drug-oriented biomedical research. Previously, we designed PIK1, H-(Nα Me)Arg-Lys-Lys-Tyr-Lys-Tyr-Arg-Arg-Lys-NH2 , that was 2.5-fold more resistant to peptidases in human plasma in vitro than L-PIK and equal to it as MLCK inhibitor. In order to further enhance proteolytic stability of PIK inhibitor, we designed the set of six site-protected peptides based on L-PIK and PIK1 degradation patterns in human plasma as revealed by 1 H-NMR analysis. Implemented modifications increased half-live of the PIK-related peptides in plasma about 10-fold, and these compounds retained 25-100% of L-PIK inhibitory activity toward MLCK in vitro. Based on stability and functional activity ranking, PIK2, H-(Nα Me)Arg-Lys-Lys-Tyr-Lys-Tyr-Arg-D-Arg-Lys-NH2 , was identified as the most stable and effective L-PIK analogue. PIK2 was able to decrease myosin light chain phosphorylation in endothelial cells stimulated with thrombin, and this effect correlated with the inhibition by PIK2 of thrombin-induced endothelial hyperpermeability in vitro. Therefore, PIK2 could be used as novel alternative to other cell-permeant inhibitors of MLCK in cell culture-based and in vivo studies where MLCK catalytic activity inhibition is required. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.


Assuntos
Proteínas Aviárias/antagonistas & inibidores , Peptídeos Penetradores de Células/síntese química , Células Endoteliais/efeitos dos fármacos , Quinase de Cadeia Leve de Miosina/antagonistas & inibidores , Inibidores de Proteínas Quinases/síntese química , Sequência de Aminoácidos , Animais , Proteínas Aviárias/química , Proteínas Aviárias/isolamento & purificação , Química Encefálica , Bovinos , Linhagem Celular , Peptídeos Penetradores de Células/sangue , Peptídeos Penetradores de Células/farmacologia , Células Endoteliais/citologia , Células Endoteliais/enzimologia , Moela das Aves/química , Meia-Vida , Humanos , Quinase de Cadeia Leve de Miosina/química , Quinase de Cadeia Leve de Miosina/isolamento & purificação , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/sangue , Inibidores de Proteínas Quinases/farmacologia , Estabilidade Proteica , Proteólise , Técnicas de Síntese em Fase Sólida/métodos , Trombina/antagonistas & inibidores , Trombina/farmacologia , Perus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...