Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 177: 116881, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38917757

RESUMO

Cutaneous leishmaniasis (CL) is a neglected disease caused by Leishmania parasites. The oral drug miltefosine is effective, but there is a growing problem of drug resistance, which has led to increasing treatment failure rates and relapse of infections. Photodynamic therapy (PDT) combines a light source and a photoactive drug to promote cell death by oxidative stress. Although PDT is effective against several pathogens, its use against drug-resistant Leishmania parasites remains unexplored. Herein, we investigated the potential of organic light-emitting diodes (OLEDs) as wearable light sources, which would enable at-home use or ambulatory treatment of CL. We also assessed its impact on combating miltefosine resistance in Leishmania amazonensis-induced CL in mice. The in vitro activity of OLEDs combined with 1,9-dimethyl-methylene blue (DMMB) (OLED-PDT) was evaluated against wild-type and miltefosine-resistant L. amazonensis strains in promastigote (EC50 = 0.034 µM for both strains) and amastigote forms (EC50 = 0.052 µM and 0.077 µM, respectively). Cytotoxicity in macrophages and fibroblasts was also evaluated. In vivo, we investigated the potential of OLED-PDT in combination with miltefosine using different protocols. Our results demonstrate that OLED-PDT is effective in killing both strains of L. amazonensis by increasing reactive oxygen species and stimulating nitric oxide production. Moreover, OLED-PDT showed great antileishmanial activity in vivo, allowing the reduction of miltefosine dose by half in infected mice using a light dose of 7.8 J/cm2 and 15 µM DMMB concentration. In conclusion, OLED-PDT emerges as a new avenue for at-home care and allows a combination therapy to overcome drug resistance in cutaneous leishmaniasis.

2.
J Phys Chem Lett ; 15(4): 1034-1047, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38259039

RESUMO

OLED technology has revolutionized the display industry and is promising for lighting. Despite its maturity, there remain outstanding device and materials challenges to address. Particularly, achieving stable and highly efficient blue OLEDs is still proving to be difficult; the vast array of degradation mechanisms at play, coupled with the precise balance of device parameters needed for blue high-performance OLEDs, creates a unique set of challenges in the quest for a suitably stable yet high-performance device. Here, we discuss recent progress in the understanding of device degradation pathways and provide an overview of possible strategies to increase device lifetimes without a significant efficiency trade-off. Only careful consideration of all variables that go into OLED development, from the choice of materials to a deep understanding of which degradation mechanisms need to be suppressed for the particular structure, can lead to a meaningful positive change toward commercializable blue devices.

3.
Proc Biol Sci ; 290(2008): 20231329, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37788706

RESUMO

Red coralline algae are the deepest living macroalgae, capable of creating spatially complex reefs from the intertidal to 100+ m depth with global ecological and biogeochemical significance. How these algae maintain photosynthetic function under increasingly limiting light intensity and spectral availability is key to explaining their large depth distribution. Here, we investigated the photo- and chromatic acclimation and morphological change of free-living red coralline algae towards mesophotic depths in the Fernando do Noronha archipelago, Brazil. From 13 to 86 m depth, thalli tended to become smaller and less complex. We observed a dominance of the photo-acclimatory response, characterized by an increase in photosynthetic efficiency and a decrease in maximum electron transport rate. Chromatic acclimation was generally stable across the euphotic-mesophotic transition with no clear depth trend. Taxonomic comparisons suggest these photosynthetic strategies are conserved to at least the Order level. Light saturation necessitated the use of photoprotection to 65 m depth, while optimal light levels were met at 86 m. Changes to the light environment (e.g. reduced water clarity) due to human activities therefore places these mesophotic algae at risk of light limitation, necessitating the importance of maintaining good water quality for the conservation and protection of mesophotic habitats.


Assuntos
Antozoários , Rodófitas , Humanos , Animais , Recifes de Corais , Ecossistema , Fotossíntese , Aclimatação , Antozoários/fisiologia
4.
PLoS One ; 18(9): e0289492, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37713373

RESUMO

The emergence of drug resistance in cutaneous leishmaniasis (CL) has become a major problem over the past decades. The spread of resistant phenotypes has been attributed to the wide misuse of current antileishmanial chemotherapy, which is a serious threat to global health. Photodynamic therapy (PDT) has been shown to be effective against a wide spectrum of drug-resistant pathogens. Due to its multi-target approach and immediate effects, it may be an attractive strategy for treatment of drug-resistant Leishmania species. In this study, we sought to evaluate the activity of PDT in vitro using the photosensitizer 1,9-dimethyl methylene blue (DMMB), against promastigotes of two Leishmania amazonensis strains: the wild-type (WT) and a lab induced miltefosine-resistant (MFR) strain. The underlying mechanisms of DMMB-PDT action upon the parasites was focused on the changes in the lipid metabolism of both strains, which was conducted by a quantitative lipidomics analysis. We also assessed the production of ROS, mitochondrial labeling and lipid droplets accumulation after DMMB-PDT. Our results show that DMMB-PDT produced high levels of ROS, promoting mitochondrial membrane depolarization due to the loss of membrane potential. In addition, both untreated strains revealed some differences in the lipid content, in which MFR parasites showed increased levels of phosphatidylcholine, hence suggesting this could also be related to their mechanism of resistance to miltefosine. Moreover, the oxidative stress and consequent lipid peroxidation led to significant phospholipid alterations, thereby resulting in cellular dysfunction and parasite death. Thus, our results demonstrated that DMMB-mediated PDT is effective to kill L. amazonensis MFR strain and should be further studied as a potential strategy to overcome antileishmanial drug resistance.


Assuntos
Leishmania mexicana , Leishmania , Lipidômica , Espécies Reativas de Oxigênio
5.
Nature ; 621(7980): 746-752, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37758890

RESUMO

Organic semiconductors are carbon-based materials that combine optoelectronic properties with simple fabrication and the scope for tuning by changing their chemical structure1-3. They have been successfully used to make organic light-emitting diodes2,4,5 (OLEDs, now widely found in mobile phone displays and televisions), solar cells1, transistors6 and sensors7. However, making electrically driven organic semiconductor lasers is very challenging8,9. It is difficult because organic semiconductors typically support only low current densities, suffer substantial absorption from injected charges and triplets, and have additional losses due to contacts10,11. In short, injecting charges into the gain medium leads to intolerable losses. Here we take an alternative approach in which charge injection and lasing are spatially separated, thereby greatly reducing losses. We achieve this by developing an integrated device structure that efficiently couples an OLED, with exceptionally high internal-light generation, with a polymer distributed feedback laser. Under the electrical driving of the integrated structure, we observe a threshold in light output versus drive current, with a narrow emission spectrum and the formation of a beam above the threshold. These observations confirm lasing. Our results provide an organic electronic device that has not been previously demonstrated, and show that indirect electrical pumping by an OLED is a very effective way of realizing an electrically driven organic semiconductor laser. This provides an approach to visible lasers that could see applications in spectroscopy, metrology and sensing.

6.
Sci Rep ; 13(1): 14087, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37640720

RESUMO

We evaluate the efficacy of antimicrobial Photodynamic Therapy (APDT) for inactivating a variety of antibiotic-resistant clinical strains from diabetic foot ulcers. Here we are focused on APDT based on organic light-emitting diodes (OLED). The wound swabs from ten patients diagnosed with diabetic foot ulcers were collected and 32 clinical strains comprising 22 bacterial species were obtained. The isolated strains were identified with the use of mass spectrometry coupled with a protein profile database and tested for antibiotic susceptibility. 74% of isolated bacterial strains exhibited adaptive antibiotic resistance to at least one antibiotic. All strains were subjected to the APDT procedure using an OLED as a light source and 16 µM methylene blue as a photosensitizer. APDT using the OLED led to a large reduction in all cases. For pathogenic bacteria, the reduction ranged from 1.1-log to > 8 log (Klebsiella aerogenes, Enterobacter cloaca, Staphylococcus hominis) even for high antibiotic resistance (MRSA 5-log reduction). Opportunistic bacteria showed a range from 0.4-log reduction for Citrobacter koseri to > 8 log reduction for Kocuria rhizophila. These results show that OLED-driven APDT is effective against pathogens and opportunistic bacteria regardless of drug resistance.


Assuntos
Anti-Infecciosos , Diabetes Mellitus , Pé Diabético , Fotoquimioterapia , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Pé Diabético/tratamento farmacológico , Enterobacter
7.
ACS Appl Nano Mater ; 6(16): 14940-14947, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37649832

RESUMO

Back-contact perovskite solar cells are of great interest because they could achieve higher performance than conventional designs while also eliminating the need for transparent conductors. Current research in this field has focused on making electrode structures with reduced widths to collect charges more efficiently, but current lift-off-based fabrication techniques have struggled to achieve electrode widths smaller than 1000 nm and are difficult to implement on large areas. We demonstrate nanoimprint lithography in an etch-down procedure as a simple and easily scalable method to produce honeycomb-shaped, quasi-interdigitated electrode structures with widths as small as 230 nm. We then use electrodeposition to selectively deposit conformal coatings of a range of different hole-selective layers and explore how the efficiency of back-contact perovskite solar cells changes as the feature sizes are pushed into the nanoscale. We find that the efficiency of the resulting devices remains almost unchanged as the electrode width is varied from 230 to 2000 nm, which differs from reported device simulations. Our results suggest that reducing recombination and improving the quality of the charge transport layers, rather than reducing the minimum feature size, are likely to be the best pathway to maximizing the performance of back-contact perovskite solar cells.

8.
ACS Appl Mater Interfaces ; 15(25): 30524-30533, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37310808

RESUMO

Organic light-emitting field-effect transistors (OLEFETs) with bilayer structures have been widely studied due to their potential to integrate high-mobility organic transistors and efficient organic light-emitting diodes. However, these devices face a major challenge of imbalance charge transport, leading to a severe efficiency roll-off at high brightness. Here, we propose a solution to this challenge by introducing a transparent organic/inorganic hybrid contact with specially designed electronic structures. Our design aims to steadily accumulate the electrons injected into the emissive polymer, allowing the light-emitting interface to effectively capture more holes even when the hole current increases. Our numerical simulations show that the capture efficiency of these steady electrons will dominate charge recombination and lead to a sustained external quantum efficiency of 0.23% over 3 orders of magnitude of brightness (4 to 7700 cd/m2) and current density (1.2 to 2700 mA/cm2) from -4 to -100 V. The same enhancement is retained even after increasing the external quantum efficiency (EQE) to 0.51%. The high and tunable brightness with stable efficiency offered by hybrid-contact OLEFETs makes them ideal light-emitting devices for various applications. These devices have the potential to revolutionize the field of organic electronics by overcoming the fundamental challenge of imbalance charge transport.

9.
Angew Chem Int Ed Engl ; 62(28): e202305182, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37193649

RESUMO

Multiresonant thermally activated delayed fluorescence (MR-TADF) compounds are attractive as emitters for organic light-emitting diodes (OLEDs) as they can simultaneously harvest both singlet and triplet excitons to produce light in the device and show very narrow emission spectra, which translates to excellent color purity. Here, we report the first example of an MR-TADF emitter (DOBDiKTa) that fuses together fragments from the two major classes of MR-TADF compounds, those containing boron (DOBNA) and those containing carbonyl groups (DiKTa) as acceptor fragments in the MR-TADF skeleton. The resulting molecular design, this compound shows desirable narrowband pure blue emission and efficient TADF character. The co-host OLED with DOBDiKTa as the emitter showed a maximum external quantum efficiency (EQEmax ) of 17.4 %, an efficiency roll-off of 32 % at 100 cd m-2 , and Commission Internationale de l'Éclairage (CIE) coordinates of (0.14, 0.12). Compared to DOBNA and DiKTa, DOBDiKTa shows higher device efficiency with reduced efficiency roll-off while maintaining a high color purity, which demonstrates the promise of the proposed molecular design.

10.
Adv Mater ; 35(33): e2300997, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37140188

RESUMO

Two multiresonant thermally activated delayed fluorescence (MR-TADF) emitters are presented and it is shown how further borylation of a deep-blue MR-TADF emitter, DIDOBNA-N, both blueshifts and narrows the emission producing a new near-UV MR-TADF emitter, MesB-DIDOBNA-N, are shown. DIDOBNA-N emits bright blue light (ΦPL = 444 nm, FWHM = 64 nm, ΦPL = 81%, τd = 23 ms, 1.5 wt% in TSPO1). The deep-blue organic light-emitting diode (OLED) based on this twisted MR-TADF compound shows a very high maximum external quantum efficiency (EQEmax ) of 15.3% for a device with CIEy of 0.073. The fused planar MR-TADF emitter, MesB-DIDOBNA-N shows efficient and narrowband near-UV emission (λPL = 402 nm, FWHM = 19 nm, ΦPL = 74.7%, τd = 133 ms, 1.5 wt% in TSPO1). The best OLED with MesB-DIDOBNA-N, doped in a co-host, shows the highest efficiency reported for a near-UV OLED at 16.2%. With a CIEy coordinate of 0.049, this device also shows the bluest EL reported for a MR-TADF OLED to date.

11.
Chem Mater ; 35(10): 3801-3814, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37251101

RESUMO

One of the great advantages of organic-inorganic metal halides is that their structures and properties are highly tuneable and this is important when optimizing materials for photovoltaics or other optoelectronic devices. One of the most common and effective ways of tuning the electronic structure is through anion substitution. Here, we report the inclusion of bromine into the layered perovskite [H3N(CH2)6NH3]PbBr4 to form [H3N(CH2)6NH3]PbBr4·Br2, which contains molecular bromine (Br2) intercalated between the layers of corner-sharing PbBr6 octahedra. Bromine intercalation in [H3N(CH2)6NH3]PbBr4·Br2 results in a decrease in the band gap of 0.85 eV and induces a structural transition from a Ruddlesden-Popper-like to Dion-Jacobson-like phase, while also changing the conformation of the amine. Electronic structure calculations show that Br2 intercalation is accompanied by the formation of a new band in the electronic structure and a significant decrease in the effective masses of around two orders of magnitude. This is backed up by our resistivity measurements that show that [H3N(CH2)6NH3]PbBr4·Br2 has a resistivity value of one order of magnitude lower than [H3N(CH2)6NH3]PbBr4, suggesting that bromine inclusion significantly increases the mobility and/or carrier concentration in the material. This work highlights the possibility of using molecular inclusion as an alternative tool to tune the electronic properties of layered organic-inorganic perovskites, while also being the first example of molecular bromine inclusion in a layered lead halide perovskite. By using a combination of crystallography and computation, we show that the key to this manipulation of the electronic structure is the formation of halogen bonds between the Br2 and Br in the [PbBr4]∞ layers, which is likely to have important effects in a range of organic-inorganic metal halides.

12.
Photodiagnosis Photodyn Ther ; 42: 103327, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36773756

RESUMO

This study aimed to evaluate, in vitro, the efficacy of photodynamic therapy - PDT using dimethyl methylene blue zinc chloride double salt (DMMB) and red LED light on planktonic cultures of Candida albicans. The tests were performed using the ATCC 90,028 strain grown at 37 °C for 24 h, according to a growth curve of C. albicans. The colonies were resuspended in sterile saline adjusted to a concentration of 2 × 108 cells / mL, with three experimental protocols being tested (Protocol 1, 2 and 3) with a fixed concentration of 750 ɳg/mL obtained through the IC50, and energy density 20 J/cm2. Protocol 1 was carried out using conventional PDT, Protocol 2 was applied double PDT in a single session, and Protocol 3 was applied double PDT in two sessions with a 24 h interval. The results showed logarithmic reductions of 3 (4.252575 ± 0.068526) and 4 logs (2.669533 ± 0.058592) of total fungal load in protocols 3 and 2 respectively in comparison to the Control (6.633547 ± 0.065384). Our results indicated that double application in a single session of PDT was the most effective approach for inhibiting the proliferation of Candida albicans (99.991% inhibition).


Assuntos
Candida albicans , Fotoquimioterapia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Luz , Azul de Metileno/farmacologia , Azul de Metileno/uso terapêutico
13.
Inorg Chem ; 62(8): 3629-3636, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36780272

RESUMO

Vacancy-ordered halide perovskites have received great interest in optoelectronic applications. In this work, we report the novel inorganic halide Cs10MnSb6Cl30 with a distinctive 10H (10-layer hexagonal) perovskite polytype structure with (hcccc)2 stacking. Cs10MnSb6Cl30 has 30% B-site vacancies ordered at both corner- and face-sharing sites, resulting in [MnSb6Cl30]10-n columns, i.e., a reduction of octahedral connectivity to 1D. This results in enhanced photoluminescence in comparison to the previously reported 25% vacancy-ordered 3C polytype Cs4MnSb2Cl12 with 2D connectivity. This demonstrates not only the existence of the 10H perovskite structure in halides but also demonstrates the degree of B-site deficiency and stacking sequence variation as a direction to tune the optical properties of perovskite polytypes via vacancy rearrangements.

14.
Chem Soc Rev ; 52(5): 1697-1722, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36779328

RESUMO

Antimicrobial photodynamic therapy (APDT) is a promising approach to fight the growing problem of antimicrobial resistance that threatens health care, food security and agriculture. APDT uses light to excite a light-activated chemical (photosensitiser), leading to the generation of reactive oxygen species (ROS). Many APDT studies confirm its efficacy in vitro and in vivo against bacteria, fungi, viruses and parasites. However, the development of the field is focused on exploring potential targets and developing new photosensitisers. The role of light, a crucial element for ROS production, has been neglected. What are the main parameters essential for effective photosensitiser activation? Does an optimal light radiant exposure exist? And finally, which light source is best? Many reports have described the promising antibacterial effects of APDT in vitro, however, its application in vivo, especially in clinical settings remains very limited. The restricted availability may partially be due to a lack of standard conditions or protocols, arising from the diversity of selected photosensitising agents (PS), variable testing conditions including light sources used for PS activation and methods of measuring anti-bacterial activity and their effectiveness in treating bacterial infections. We thus sought to systematically review and examine the evidence from existing studies on APDT associated with the light source used. We show how the reduction of pathogens depends on the light source applied, radiant exposure and irradiance of light used, and type of pathogen, and so critically appraise the current state of development of APDT and areas to be addressed in future studies. We anticipate that further standardisation of the experimental conditions will help the field advance, and suggest key optical and biological parameters that should be reported in all APDT studies. More in vivo and clinical studies are needed and are expected to be facilitated by advances in light sources, leading to APDT becoming a sustainable, alternative therapeutic option for bacterial and other microbial infections in the future.


Assuntos
Anti-Infecciosos , Fotoquimioterapia , Espécies Reativas de Oxigênio , Fotoquimioterapia/métodos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias
15.
Angew Chem Int Ed Engl ; 62(8): e202215522, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36480790

RESUMO

We present a p- and n-doped nonacene compound, NOBNacene, that represents a rare example of a linearly extended ladder-type multiresonant thermally activated delayed fluorescence (MR-TADF) emitter. This compound shows efficient narrow deep blue emission, with a λPL of 410 nm, full width at half maximum, FWHM, of 38 nm, photoluminescence quantum yield, ΦPL of 71 %, and a delayed lifetime, τd of 1.18 ms in 1.5 wt % TSPO1 thin film. The organic light-emitting diode (OLED) using this compound as the emitter shows a comparable electroluminescence spectrum peaked at 409 nm (FWHM=37 nm) and a maximum external quantum efficiency (EQEmax ) of 8.5 % at Commission Internationale de l'Éclairage (CIE) coordinates of (0.173, 0.055). The EQEmax values were increased to 11.2 % at 3 wt % doping of the emitter within the emissive layer of the device. At this concentration, the electroluminescence spectrum broadened slightly, leading to CIE coordinates of (0.176, 0.068).

16.
Biosensors (Basel) ; 12(12)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36551092

RESUMO

Immunodiagnostics have been widely used in the detection of disease biomarkers. The conventional immunological tests in central laboratories require expensive equipment and, for non-specialists, the tests are technically demanding and time-consuming, which has prevented their use by the public. Thus, point-of-care tests (POCT), such as lateral flow immunoassays, are being, or have been, developed as more convenient and low-cost methods for immunodiagnostics. However, the sensitivity of such tests is often a concern. Here, a fluorescence-linked immunosorbent assay (FLISA) using organic light-emitting diodes (OLEDs) as excitation light sources was investigated as a way forward for the development of compact and sensitive POCTs. Phycoerythrin (PE) was selected as the fluorescent dye, and OLEDs were designed with different emission spectra. The leakage light of different OLEDs for exciting PE was then investigated to reduce the background noise and improve the sensitivity of the system. Finally, as proof-of-principle that OLED-based technology can be successfully further developed for POCT, antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in human serum was detected by OLED-FLISA.


Assuntos
COVID-19 , Imunoadsorventes , Humanos , SARS-CoV-2 , Fluorescência , COVID-19/diagnóstico , Anticorpos Antivirais
17.
BMC Biol ; 20(1): 291, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575464

RESUMO

BACKGROUND: Despite a global prevalence of photosynthetic organisms in the ocean's mesophotic zone (30-200+ m depth), the mechanisms that enable photosynthesis to proceed in this low light environment are poorly defined. Red coralline algae are the deepest known marine benthic macroalgae - here we investigated the light harvesting mechanism and mesophotic acclimatory response of the red coralline alga Lithothamnion glaciale. RESULTS: Following initial absorption by phycourobilin and phycoerythrobilin in phycoerythrin, energy was transferred from the phycobilisome to photosystems I and II within 120 ps. This enabled delivery of 94% of excitations to reaction centres. Low light intensity, and to a lesser extent a mesophotic spectrum, caused significant acclimatory change in chromophores and biliproteins, including a 10% increase in phycoerythrin light harvesting capacity and a 20% reduction in chlorophyll-a concentration and photon requirements for photosystems I and II. The rate of energy transfer remained consistent across experimental treatments, indicating an acclimatory response that maintains energy transfer. CONCLUSIONS: Our results demonstrate that responsive light harvesting by phycobilisomes and photosystem functional acclimation are key to red algal success in the mesophotic zone.


Assuntos
Ficoeritrina , Rodófitas , Ficobilissomas/metabolismo , Fotossíntese/fisiologia , Luz , Rodófitas/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo
18.
Nat Commun ; 13(1): 7191, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36424397

RESUMO

The strong nonlinearities of exciton-polariton condensates in lattices make them suitable candidates for neuromorphic computing and physical simulations of complex problems. So far, all room temperature polariton condensate lattices have been achieved by nanoimprinting microcavities, which by nature lacks the crucial tunability required for realistic reconfigurable simulators. Here, we report the observation of a quantised oscillating nonlinear quantum fluid in 1D and 2D potentials in an organic microcavity at room temperature, achieved by an on-the-fly fully tuneable optical approach. Remarkably, the condensate is delocalised from the excitation region by macroscopic distances, leading both to longer coherence and a threshold one order of magnitude lower than that with a conventional Gaussian excitation profile. We observe different mode selection behaviour compared to inorganic materials, which highlights the anomalous scaling of blueshift with pump intensity and the presence of sizeable energy-relaxation mechanisms. Our work is a major step towards a fully tuneable polariton simulator at room temperature.

19.
Angew Chem Int Ed Engl ; 61(52): e202213697, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36300809

RESUMO

Herein, we demonstrate how judicious selection of the donor decorating a central multi-resonant thermally activated delayed fluorescence (MR-TADF) core based on DiKTa can lead to very high-performance OLEDs. By decorating the DiKTa core with triphenylamine (TPA) and diphenylamine (DPA), 3TPA-DiKTa and 3DPA-DiKTa exhibit bright, narrowband green and red emission in doped films, respectively. The OLEDs based on these emitters showed record-high performance for this family of emitters with maximum external quantum efficiencies (EQEmax ) of 30.8 % for 3TPA-DiKTa at λEL of 551 nm and 16.7 % for 3DPA-DiKTa at λEL =613 nm. The efficiency roll-off in the OLEDs was improved significantly by using 4CzIPN as an assistant dopant in hyperfluorescence (HF) devices. The outstanding device performance has been attributed to preferential horizontal orientation of the transition dipole moments of 3TPA-DiKTa and 3DPA-DiKTa.

20.
ACS Appl Mater Interfaces ; 14(19): 22341-22352, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35533089

RESUMO

Strategies to tune the emission of multiresonant thermally activated delayed fluorescence (MR-TADF) emitters remain rare. Here, we explore the effect of donor substitution about a MR-TADF core on the emission energy and the nature of the excited state. We decorate different numbers and types of electron-donors about a central MR-TADF core, DiKTa. Depending on the identity and number of donor groups, the excited state either remains short-range charge transfer (SRCT) and thus characteristic of an MR-TADF emitter or becomes a long-range charge transfer (LRCT) that is typically observed in donor-acceptor TADF emitters. The impact is that in three examples that emit from a SRCT state, Cz-DiKTa, Cz-Ph-DiKTa, and 3Cz-DiKTa, the emission remains narrow, while in four examples that emit via a LRCT state, TMCz-DiKTa, DMAC-DiKTa, 3TMCz-DiKTa, and 3DMAC-DiKTa, the emission broadens significantly. Through this strategy, the organic light-emitting diodes fabricated with the three MR-TADF emitters show maximum electroluminescence emission wavelengths, λEL, of 511, 492, and 547 nm with moderate full width at half-maxima (fwhm) of 62, 61, and 54 nm, respectively. Importantly, each of these devices show high maximum external quantum efficiencies (EQEmax) of 24.4, 23.0, and 24.4%, which are among the highest reported with ketone-based MR-TADF emitters. OLEDs with D-A type emitters, DMAC-DiKTa and TMCz-DiKTa, also show high efficiencies, with EQEmax of 23.8 and 20.2%, but accompanied by broad emission at λEL of 549 and 527 nm, respectively. Notably, the DMAC-DiKTa-based OLED shows very small efficiency roll-off, and its EQE remains 18.5% at 1000 cd m-2. Therefore, this work demonstrates that manipulating the nature and numbers of donor groups decorating a central MR-TADF core is a promising strategy for both red-shifting the emission and improving the performance of the OLEDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...