Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22275840

RESUMO

For each of the COVID-19 pandemic waves, hospitals have had to plan for deploying surge capacity and resources to manage large but transient increases in COVID-19 admissions. While a lot of effort has gone into predicting regional trends in COVID-19 cases and hospitalizations, there are far fewer successful tools for creating accurate hospital-level forecasts. At the same time, anonymized phone-collected mobility data proved to correlate well with the number of cases for the first two waves of the pandemic (spring 2020, and fall-winter 2021). In this work, we show how mobility data could bolster hospital-specific COVID-19 admission forecasts for five hospitals in Massachusetts during the initial COVID-19 surge. The high predictive capability of the model was achieved by combining anonymized, aggregated mobile device data about users contact patterns, commuting volume, and mobility range with COVID hospitalizations and test-positivity data. We conclude that mobility-informed forecasting models can increase the lead-time of accurate predictions for individual hospitals, giving managers valuable time to strategize how best to allocate resources to manage forthcoming surges.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21267199

RESUMO

During the first year of the COVID-19 pandemic, the number of incarcerated people in the United States decreased by at least 16%--the largest, fastest reduction in prison population in American history. Using an original dataset curated from public sources on prison demographics across all 50 states and the District of Columbia, we show that incarcerated white people benefited disproportionately from this decrease in the U.S. prison population, and the fraction of incarcerated Black and Latino people sharply increased. This pattern deviates from a decade-long trend before 2020 and the onset of COVID-19, during which the proportion of incarcerated Black people was declining. Using case studies of select states, we explore and quantify mechanisms that could explain these disparities: temporary court closures that led to fewer prison admissions, changes in the frequency of police interactions, and state-level prison release policies that sought to de-densify congregate settings. These findings illuminate how systemic inequalities pervade juridicial and penal institutions and are key features of mass incarceration in America.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21264419

RESUMO

With a dataset of testing and case counts from over 1,400 institutions of higher education (IHEs) in the United States, we analyze the number of infections and deaths from SARS-CoV-2 in the counties surrounding these IHEs during the Fall 2020 semester (August to December, 2020). We used a matching procedure designed to create groups of counties that are aligned along age, race, income, population, and urban/rural categories--socio-demographic variables that have been shown to be correlated with COVID-19 outcomes. We find that counties with IHEs that remained primarily online experienced fewer cases and deaths during the Fall 2020 semester; whereas before and after the semester, these two groups had almost identical COVID-19 incidence. Additionally, we see fewer deaths in counties with IHEs that reported conducting any on-campus testing compared to those that reported none. We complement the statistical analysis with a case study of IHEs in Massachusetts--a rich data state in our dataset--which further highlights the importance of IHE-affiliated testing for the broader community. The results in this work suggest that campus testing can itself be thought of as a mitigation policy and that allocating additional resources to IHEs to support efforts to regularly test students and staff would be beneficial to mitigating the spread of COVID-19 in the general population.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20220897

RESUMO

Massive unemployment during the COVID-19 pandemic could result in an eviction crisis in US cities. Here we model the effect of evictions on SARS-CoV-2 epidemics, simulating viral transmission within and among households in a theoretical metropolitan area. We recreate a range of urban epidemic trajectories and project the course of the epidemic under two counterfactual scenarios, one in which a strict moratorium on evictions is in place and enforced, and another in which evictions are allowed to resume at baseline or increased rates. We find, across scenarios, that evictions lead to significant increases in infections. Applying our model to Philadelphia using locally-specific parameters shows that the increase is especially profound in models that consider realistically heterogenous cities in which both evictions and contacts occur more frequently in poorer neighborhoods. Our results provide a basis to assess municipal eviction moratoria and show that policies to stem evictions are a warranted and important component of COVID-19 control.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20078964

RESUMO

IntroductionCloth face coverings and surgical masks have become commonplace across the United States in response to the SARS-CoV-2 epidemic. While evidence suggests masks help curb the spread of respiratory pathogens, research is limited. Face masks have quickly become a topic of public debate as government mandates have started requiring their use. Here we investigate the association between self-reported mask wearing, social distancing and community SARS-CoV-2 transmission in the United States, as well as the effect of statewide mandates on mask uptake. MethodsSerial cross-sectional surveys were administered June 3 through July 27, 2020 via web platform. Surveys queried individuals likelihood to wear a face mask to the grocery store or with family and friends. Responses (N=378,207) were aggregated by week and state and combined with measures of the instantaneous reproductive number (Rt), social distancing proxies, respondent demographics and other potential sources of confounding. We fit multivariate logistic regression models to estimate the association between mask wearing and community transmission control (Rt <1) for each state and week. Multiple sensitivity analyses were considered to corroborate findings across mask wearing definitions, Rt estimators and data sources. Additionally, mask wearing in 12 states was evaluated two weeks before and after statewide mandates. ResultsWe find an upward trend in mask usage across the U.S., although uptake varies by geography and demographic groups. A multivariate logistic model controlling for social distancing and other variables found a 10% increase in mask wearing was associated with a 3.53 (95% CI: 2.03, 6.43) odds of transmission control (Rt <1). We also find that communities with high mask wearing and social distancing have the highest predicted probability of a controlled epidemic. These positive associations were maintained across sensitivity analyses. Segmented regression analysis of mask wearing found no statistical change following mandates, however the positive trend of increased mask wearing over time was preserved. ConclusionWidespread utilization of face masks combined with social distancing increases the odds of SARS-CoV-2 transmission control. Mask wearing rose separately from government mask mandates, suggesting supplemental public health interventions are needed to maximize mask adoption and disrupt the spread of SARS-CoV-2, especially as social distancing measures are relaxed.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20179473

RESUMO

Controlling the spread of COVID-19 - even after a licensed vaccine is available - requires the effective use of non-pharmaceutical interventions, e.g., physical distancing, limits on group sizes, mask wearing, etc.. To date, such interventions have neither been uniformly nor systematically implemented in most countries. For example, even when under strict stay-at-home orders, numerous jurisdictions granted exceptions and/or were in close proximity to locations with entirely different regulations in place. Here, we investigate the impact of such geographic inconsistencies in epidemic control policies by coupling search and mobility data to a simple mathematical model of SARS-COV2 transmission. Our results show that while stay-at-home orders decrease contacts in most areas of the United States of America (US), some specific activities and venues often see an increase in attendance. Indeed, over the month of March 2020, between 10 and 30% of churches in the US saw increases in attendance; even as the total number of visits to churches declined nationally. This heterogeneity, where certain venues see substantial increases in attendance while others close, suggests that closure can cause individuals to find an open venue, even if that requires longer-distance travel. And, indeed, the average distance travelled to churches in the US rose by 13% over the same period. Strikingly, our mathematical model reveals that, across a broad range of model parameters, partial measures can often be worse than no measures at all. In the most severe cases, individuals not complying with policies by traveling to neighboring jurisdictions can create epidemics when the outbreak would otherwise have been controlled. Taken together, our data analysis and modelling results highlight the potential unintended consequences of inconsistent epidemic control policies and stress the importance of balancing the societal needs of a population with the risk of an outbreak growing into a large epidemic.

7.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20090092

RESUMO

Variation in free-living, microparasite survival can have a meaningful impact on the ecological dynamics of established and emerging infectious diseases. Nevertheless, resolving the importance of environmental transmission in the ecology of epidemics remains a persistent challenge, requires accurate measuring the free-living survival of pathogens across reservoirs of various kinds, and quantifying the extent to which interaction between hosts and reservoirs generates new infections. These questions are especially salient for emerging pathogens, where sparse and noisy data can obfuscate the relative contribution of different infection routes. In this study, we develop a mechanistic, mathematical model that permits both direct (host-to-host) and indirect (environmental) transmission and then fit this model to empirical data from 17 countries affected by an emerging virus (SARS-CoV-2). From an ecological perspective, our model highlights the potential for environmental transmission to drive complex, non-linear dynamics during infectious disease outbreaks. Summarizing, we propose that fitting such models with environmental transmission to real outbreak data from SARS-CoV-2 transmission highlights that variation in environmental transmission is an underappreciated aspect of the ecology of infectious disease, and an incomplete understanding of its role has consequences for public health interventions.

8.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20050203

RESUMO

BackgroundThe first case of COVID-19 in sub-Saharan Africa (SSA) was reported by Nigeria on February 27, 2020. While case counts in the entire region remain considerably less than those being reported by individual countries in Europe, Asia, and the Americas, SSA countries remain vulnerable to COVID morbidity and mortality due to systemic healthcare weaknesses, less financial resources and infrastructure to address the new crisis, and untreated comorbidities. Variation in preparedness and response capacity as well as in data availability has raised concerns about undetected transmission events. MethodsConfirmed cases reported by SSA countries were line-listed to capture epidemiological details related to early transmission events into and within countries. Data were retrieved from publicly available sources, including institutional websites, situation reports, press releases, and social media accounts, with supplementary details obtained from news articles. A data availability score was calculated for each imported case in terms of how many indicators (sex, age, travel history, date of arrival in country, reporting date of confirmation, and how detected) could be identified. We assessed the relationship between time to first importation and overall Global Health Security Index (GHSI) using Cox regression. K-means clustering grouped countries according to healthcare capacity and health and demographic risk factors. ResultsA total of 13,201 confirmed cases of COVID-19 were reported by 48 countries in SSA during the 54 days following the first known introduction to the region. Out of the 2516 cases for which travel history information was publicly available, 1129 (44.9%) were considered importation events. At the regional level, imported cases tended to be male (65.0%), were a median 41.0 years old (Range: 6 weeks - 88 years), and most frequently had recent travel history from Europe (53.1%). The median time to reporting an introduction was 19 days; a countrys time to report its first importation was not related to GHSI, after controlling for air traffic. Countries that had, on average, the highest case fatality rates, lowest healthcare capacity, and highest probability of premature death due to non-communicable diseases were among the last to report any cases. ConclusionsCountries with systemic, demographic, and pre-existing health vulnerabilities to severe COVID-related morbidity and mortality are less likely to report any cases or may be reporting with limited public availability of information. Reporting on COVID detection and response efforts, as well as on trends in non-COVID illness and care-seeking behavior, is critical to assessing direct and indirect consequences and capacity needs in resource-constrained settings. Such assessments aid in the ability to make data-driven decisions about interventions, country priorities, and risk assessment. Key MessagesO_LIWe line-listed epidemiological indicators for the initial cases reported by 48 countries in sub-Saharan Africa by reviewing and synthesizing information provided by official institutional outlets and news sources. C_LIO_LIOur findings suggest that countries with the largest proportions of untreated comorbidities, as measured by probability of premature death due to non-communicable diseases, and the fewest healthcare resources tended to not be reporting any cases at one-month post-introduction into the region. C_LIO_LIUsing data availability as a measure of gaps in detection and reporting and relating them to COVID-specific parameters for morbidity and mortality provides a measure of vulnerability. C_LIO_LIAccurate and available information on initial cases in seeding local outbreaks is key to projecting case counts and assessing the potential impact of intervention approaches, such that support for local data teams will be important as countries make decisions about control strategies. C_LI

9.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20026708

RESUMO

The ongoing COVID-19 outbreak has expanded rapidly throughout China. Major behavioral, clinical, and state interventions are underway currently to mitigate the epidemic and prevent the persistence of the virus in human populations in China and worldwide. It remains unclear how these unprecedented interventions, including travel restrictions, have affected COVID-19 spread in China. We use real-time mobility data from Wuhan and detailed case data including travel history to elucidate the role of case importation on transmission in cities across China and ascertain the impact of control measures. Early on, the spatial distribution of COVID-19 cases in China was well explained by human mobility data. Following the implementation of control measures, this correlation dropped and growth rates became negative in most locations, although shifts in the demographics of reported cases are still indicative of local chains of transmission outside Wuhan. This study shows that the drastic control measures implemented in China have substantially mitigated the spread of COVID-19.

10.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20021725

RESUMO

The basic reproductive number -- R0 -- is one of the most common and most commonly misapplied numbers in public health. Although often used to compare outbreaks and forecast pandemic risk, this single number belies the complexity that two different pathogens can exhibit, even when they have the same R0 [1-3]. Here, we show how to predict outbreak size using estimates of the distribution of secondary infections, leveraging both its average R0 and the underlying heterogeneity. To do so, we reformulate and extend a classic result from random network theory [4] that relies on contact tracing data to simultaneously determine the first moment (R0) and the higher moments (representing the heterogeneity) in the distribution of secondary infections. Further, we show the different ways in which this framework can be implemented in the data-scarce reality of emerging pathogens. Lastly, we demonstrate that without data on the heterogeneity in secondary infections for emerging infectious diseases like COVID-19, the uncertainty in outbreak size ranges dramatically. Taken together, our work highlights the critical need for contact tracing during emerging infectious disease outbreaks and the need to look beyond R0 when predicting epidemic size.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA