Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 9: 78, 2008 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-18267027

RESUMO

BACKGROUND: Thyroid hormones (TH) induce gene expression programs that orchestrate amphibian metamorphosis. In contrast to anurans, many salamanders do not undergo metamorphosis in nature. However, they can be induced to undergo metamorphosis via exposure to thyroxine (T4). We induced metamorphosis in juvenile Mexican axolotls (Ambystoma mexicanum) using 5 and 50 nM T4, collected epidermal tissue from the head at four time points (Days 0, 2, 12, 28), and used microarray analysis to quantify mRNA abundances. RESULTS: Individuals reared in the higher T4 concentration initiated morphological and transcriptional changes earlier and completed metamorphosis by Day 28. In contrast, initiation of metamorphosis was delayed in the lower T4 concentration and none of the individuals completed metamorphosis by Day 28. We identified 402 genes that were statistically differentially expressed by > or = two-fold between T4 treatments at one or more non-Day 0 sampling times. To complement this analysis, we used linear and quadratic regression to identify 542 and 709 genes that were differentially expressed by > or = two-fold in the 5 and 50 nM T4 treatments, respectively. CONCLUSION: We found that T4 concentration affected the timing of gene expression and the shape of temporal gene expression profiles. However, essentially all of the identified genes were similarly affected by 5 and 50 nM T4. We discuss genes and biological processes that appear to be common to salamander and anuran metamorphosis, and also highlight clear transcriptional differences. Our results show that gene expression in axolotls is diverse and precise, and that axolotls provide new insights about amphibian metamorphosis.


Assuntos
Ambystoma mexicanum/crescimento & desenvolvimento , Ambystoma mexicanum/genética , Metamorfose Biológica/efeitos dos fármacos , Metamorfose Biológica/genética , Tiroxina/farmacologia , Transcrição Gênica/efeitos dos fármacos , Ambystoma mexicanum/metabolismo , Animais , Biologia Computacional , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica/estatística & dados numéricos , Modelos Genéticos , Análise de Sequência com Séries de Oligonucleotídeos/estatística & dados numéricos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Regressão , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie , Tiroxina/administração & dosagem , Xenopus/genética , Xenopus/crescimento & desenvolvimento
2.
Artigo em Inglês | MEDLINE | ID: mdl-16926121

RESUMO

Ambystomatid salamanders offer several advantages for endocrine disruption research, including genomic and bioinformatics resources, an accessible laboratory model (Ambystoma mexicanum), and natural lineages that are broadly distributed among North American habitats. We used microarray analysis to measure the relative abundance of transcripts isolated from A. mexicanum epidermis (skin) after exogenous application of thyroid hormone (TH). Only one gene had a >2-fold change in transcript abundance after 2 days of TH treatment. However, hundreds of genes showed significantly different transcript levels at days 12 and 28 in comparison to day 0. A list of 123 TH-responsive genes was identified using statistical, BLAST, and fold level criteria. Cluster analysis identified two groups of genes with similar transcription patterns: up-regulated versus down-regulated. Most notably, several keratins exhibited dramatic (1000 fold) increases or decreases in transcript abundance. Keratin gene expression changes coincided with morphological remodeling of epithelial tissues. This suggests that keratin loci can be developed as sensitive biomarkers to assay temporal disruptions of larval-to-adult gene expression programs. Our study has identified the first collection of loci that are regulated during TH-induced metamorphosis in a salamander, thus setting the stage for future investigations of TH disruption in the Mexican axolotl and other salamanders of the genus Ambystoma.


Assuntos
Queratinas/genética , Hormônios Tireóideos/genética , Ambystoma , Animais , Biomarcadores , Interpretação Estatística de Dados , Metamorfose Biológica/efeitos dos fármacos , Família Multigênica , Análise de Sequência com Séries de Oligonucleotídeos , Análise Serial de Proteínas , RNA/biossíntese , RNA/genética , RNA/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Hormônios Tireóideos/biossíntese , Regulação para Cima/genética
3.
BMC Genomics ; 6: 181, 2005 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-16359543

RESUMO

Salamanders of the genus Ambystoma are a unique model organism system because they enable natural history and biomedical research in the laboratory or field. We developed Sal-Site to integrate new and existing ambystomatid salamander research resources in support of this model system. Sal-Site hosts six important resources: 1) Salamander Genome Project: an information-based web-site describing progress in genome resource development, 2) Ambystoma EST Database: a database of manually edited and analyzed contigs assembled from ESTs that were collected from A. tigrinum tigrinum and A. mexicanum, 3) Ambystoma Gene Collection: a database containing full-length protein-coding sequences, 4) Ambystoma Map and Marker Collection: an image and database resource that shows the location of mapped markers on linkage groups, provides information about markers, and provides integrating links to Ambystoma EST Database and Ambystoma Gene Collection databases, 5) Ambystoma Genetic Stock Center: a website and collection of databases that describe an NSF funded salamander rearing facility that generates and distributes biological materials to researchers and educators throughout the world, and 6) Ambystoma Research Coordination Network: a web-site detailing current research projects and activities involving an international group of researchers. Sal-Site is accessible at http://www.ambystoma.org.


Assuntos
Bases de Dados como Assunto , Urodelos/genética , Animais , Mapeamento Cromossômico , Biologia Computacional , Mapeamento de Sequências Contíguas , Etiquetas de Sequências Expressas , Biblioteca Gênica , Genoma , Internet
4.
Gene ; 349: 43-53, 2005 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-15780978

RESUMO

We report on a study that extended mitochondrial transcript information from a recent EST project to obtain complete mitochondrial genome sequence for 5 tiger salamander complex species (Ambystoma mexicanum, A. t. tigrinum, A. andersoni, A. californiense, and A. dumerilii). We describe, for the first time, aspects of mitochondrial transcription in a representative amphibian, and then use complete mitochondrial sequence data to examine salamander phylogeny at both deep and shallow levels of evolutionary divergence. The available mitochondrial ESTs for A. mexicanum (N=2481) and A. t. tigrinum (N=1205) provided 92% and 87% coverage of the mitochondrial genome, respectively. Complete mitochondrial sequences for all species were rapidly obtained by using long distance PCR and DNA sequencing. A number of genome structural characteristics (base pair length, base composition, gene number, gene boundaries, codon usage) were highly similar among all species and to other distantly related salamanders. Overall, mitochondrial transcription in Ambystoma approximated the pattern observed in other vertebrates. We inferred from the mapping of ESTs onto mtDNA that transcription occurs from both heavy and light strand promoters and continues around the entire length of the mtDNA, followed by post-transcriptional processing. However, the observation of many short transcripts corresponding to rRNA genes indicates that transcription may often terminate prematurely to bias transcription of rRNA genes; indeed an rRNA transcription termination signal sequence was observed immediately following the 16S rRNA gene. Phylogenetic analyses of salamander family relationships consistently grouped Ambystomatidae in a clade containing Cryptobranchidae and Hynobiidae, to the exclusion of Salamandridae. This robust result suggests a novel alternative hypothesis because previous studies have consistently identified Ambystomatidae and Salamandridae as closely related taxa. Phylogenetic analyses of tiger salamander complex species also produced robustly supported trees. The D-loop, used in previous molecular phylogenetic studies of the complex, was found to contain a relatively low level of variation and we identified mitochondrial regions with higher rates of molecular evolution that are more useful in resolving relationships among species. Our results show the benefit of using complete genome mitochondrial information in studies of recently and rapidly diverged taxa.


Assuntos
Ambystomatidae/genética , DNA Mitocondrial , Genoma , Filogenia , Transcrição Gênica , Animais , Sequência de Bases , Teorema de Bayes , Mapeamento de Sequências Contíguas , Evolução Molecular , Etiquetas de Sequências Expressas , Genes de RNAr , Polimorfismo Genético , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
5.
BMC Genomics ; 5(1): 54, 2004 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-15310388

RESUMO

BACKGROUND: Establishing genomic resources for closely related species will provide comparative insights that are crucial for understanding diversity and variability at multiple levels of biological organization. We developed ESTs for Mexican axolotl (Ambystoma mexicanum) and Eastern tiger salamander (A. tigrinum tigrinum), species with deep and diverse research histories. RESULTS: Approximately 40,000 quality cDNA sequences were isolated for these species from various tissues, including regenerating limb and tail. These sequences and an existing set of 16,030 cDNA sequences for A. mexicanum were processed to yield 35,413 and 20,599 high quality ESTs for A. mexicanum and A. t. tigrinum, respectively. Because the A. t. tigrinum ESTs were obtained primarily from a normalized library, an approximately equal number of contigs were obtained for each species, with 21,091 unique contigs identified overall. The 10,592 contigs that showed significant similarity to sequences from the human RefSeq database reflected a diverse array of molecular functions and biological processes, with many corresponding to genes expressed during spinal cord injury in rat and fin regeneration in zebrafish. To demonstrate the utility of these EST resources, we searched databases to identify probes for regeneration research, characterized intra- and interspecific nucleotide polymorphism, saturated a human - Ambystoma synteny group with marker loci, and extended PCR primer sets designed for A. mexicanum / A. t. tigrinum orthologues to a related tiger salamander species. CONCLUSIONS: Our study highlights the value of developing resources in traditional model systems where the likelihood of information transfer to multiple, closely related taxa is high, thus simultaneously enabling both laboratory and natural history research.


Assuntos
Ambystoma/genética , Etiquetas de Sequências Expressas , Ambystoma mexicanum/genética , Animais , Mapeamento Cromossômico/métodos , Mapeamento de Sequências Contíguas , Biblioteca Gênica , Humanos , Polimorfismo Genético , Ratos , Regeneração/genética , Homologia de Sequência do Ácido Nucleico , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...