Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38352378

RESUMO

BACKGROUND: Impairments in behavioral pattern separation (BPS)-the ability to distinguish between similar contexts or experiences-contribute to memory interference and overgeneralization seen in many neuropsychiatric conditions, including depression, anxiety, PTSD, dementia, and age-related cognitive decline. While BPS relies on the dentate gyrus and is sensitive to changes in adult hippocampal neurogenesis (AHN), its significance as a pharmacological target has not been tested. METHODS: In this study, we applied a human neural stem cell high-throughput screening cascade to identify compounds that increase human neurogenesis. One compound with a favorable profile, RO6871135, was then tested in BPS in mice. RESULTS: Chronic treatment with RO6871135, 7.5 mg/kg increased AHN and improved BPS in a fear discrimination task in both young and aged mice. RO6871135 treatment also lowered innate anxiety-like behavior, which was more apparent in mice exposed to chronic corticosterone. Ablation of AHN by hippocampal irradiation supported a neurogenesis-dependent mechanism for RO6871135-induced improvements in BPS. To identify possible mechanisms of action, in vitro and in vivo kinase inhibition and chemical proteomics assays were performed. These tests indicated that RO6871135 inhibited CDK8, CDK11, CaMK2a, CaMK2b, MAP2K6, and GSK3b. An analog compound also demonstrated high affinity for CDK8, CaMK2a, and GSK3b. CONCLUSIONS: These studies demonstrate a method for empirical identification and preclinical testing of novel neurogenic compounds that can improve BPS, and points to possible novel mechanisms that can be interrogated for the development of new therapies to improve specific endophenotypes such as impaired BPS.

2.
Psychoneuroendocrinology ; 161: 106920, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38128260

RESUMO

Mood disorders, like major depressive disorder, can be precipitated by chronic stress and are more likely to be diagnosed in cisgender women than in cisgender men. This suggests that stress signaling in the brain is sexually dimorphic. We used a chronic variable mild stress paradigm to stress female and male mice for 6 weeks, followed by an assessment of avoidance behavior: the open field test, the elevated plus maze, the light/dark box emergence test, and the novelty suppressed feeding test. Additional cohorts were used for bulk RNA-Sequencing of the anterodorsal bed nucleus of the stria terminalis (adBNST) and whole-cell patch clamp electrophysiology in NPY-expressing neurons of the adBNST to record stress-sensitive M-currents. Our results indicate that females are more affected by chronic stress as indicated by an increase in avoidance behaviors, but that this is also dependent on the estrous stage of the animals such that diestrus females show more avoidant behaviors regardless of stress treatment. Results also indicate that NPY-expressing neurons of the adBNST are not major mediators of chronic stress as the M-current was not affected by treatment. RNA-Sequencing data suggests sex differences in estrogen signaling, serotonin signaling, and orexin signaling in the adBNST. Our results indicate that chronic stress influences behavior in a sex- and estrous stage-dependent manner but NPY-expressing neurons in the BNST are not the mediators of these effects.


Assuntos
Transtorno Depressivo Maior , Núcleos Septais , Humanos , Camundongos , Feminino , Masculino , Animais , Núcleos Septais/fisiologia , Transtorno Depressivo Maior/metabolismo , Neurônios/metabolismo , Transdução de Sinais/fisiologia , RNA/metabolismo
3.
Neurobiol Dis ; 183: 106191, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37290577

RESUMO

The mood disorders major depressive disorder (MDD) and bipolar disorder (BD) are highly prevalent worldwide. Women are more vulnerable to these psychopathologies than men. The bed nucleus of the stria terminalis (BNST), the amygdala, and the hypothalamus are the crucial interconnected structures involved in the stress response. In mood disorders, stress systems in the brain are put into a higher gear. The BNST is implicated in mood, anxiety, and depression. The stress-related neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is highly abundant in the central BNST (cBNST). In this study, we investigated alterations in PACAP in the cBNST of patients with mood disorders. Immunohistochemical (IHC) staining of PACAP and in situ hybridization (ISH) of PACAP mRNA were performed on the cBNST of post-mortem human brain samples. Quantitative IHC revealed elevated PACAP levels in the cBNST in both mood disorders, MDD and BD, but only in men, not in women. The PACAP ISH was negative, indicating that PACAP is not produced in the cBNST. The results support the possibility that PACAP innervation of the cBNST plays a role in mood disorder pathophysiology in men.


Assuntos
Transtorno Depressivo Maior , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Núcleos Septais , Feminino , Humanos , Masculino , Transtornos do Humor , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Núcleos Septais/metabolismo , Estresse Psicológico
4.
Mol Psychiatry ; 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386058

RESUMO

Although clinical reports have highlighted association of the deacetylase sirtuin 1 (SIRT1) gene with anxiety, its exact role in the pathogenesis of anxiety disorders remains unclear. The present study was designed to explore whether and how SIRT1 in the mouse bed nucleus of the stria terminalis (BNST), a key limbic hub region, regulates anxiety. In a chronic stress model to induce anxiety in male mice, we used site- and cell-type-specific in vivo and in vitro manipulations, protein analysis, electrophysiological and behavioral analysis, in vivo MiniScope calcium imaging and mass spectroscopy, to characterize possible mechanism underlying a novel anxiolytic role for SIRT1 in the BNST. Specifically, decreased SIRT1 in parallel with increased corticotropin-releasing factor (CRF) expression was found in the BNST of anxiety model mice, whereas pharmacological activation or local overexpression of SIRT1 in the BNST reversed chronic stress-induced anxiety-like behaviors, downregulated CRF upregulation, and normalized CRF neuronal hyperactivity. Mechanistically, SIRT1 enhanced glucocorticoid receptor (GR)-mediated CRF transcriptional repression through directly interacting with and deacetylating the GR co-chaperone FKBP5 to induce its dissociation from the GR, ultimately downregulating CRF. Together, this study unravels an important cellular and molecular mechanism highlighting an anxiolytic role for SIRT1 in the mouse BNST, which may open up new therapeutic avenues for treating stress-related anxiety disorders.

5.
Front Behav Neurosci ; 16: 903782, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35983475

RESUMO

The sexually dimorphic bed nucleus of the stria terminalis (BNST) is comprised of several distinct regions, some of which act as a hub for stress-induced changes in neural circuitry and behavior. In rodents, the anterodorsal BNST is especially affected by chronic exposure to stress, which results in alterations to the corticotropin-releasing factor (CRF)-signaling pathway, including CRF receptors and upstream regulators. Stress increases cellular excitability in BNST CRF+ neurons by potentiating miniature excitatory postsynaptic current (mEPSC) amplitude, altering the resting membrane potential, and diminishing M-currents (a voltage-gated K+ current that stabilizes membrane potential). Rodent anterodorsal and anterolateral BNST neurons are also critical regulators of behavior, including avoidance of aversive contexts and fear learning (especially that of sustained threats). These rodent behaviors are historically associated with anxiety. Furthermore, BNST is implicated in stress-related mood disorders, including anxiety and Post-Traumatic Stress Disorders in humans, and may be linked to sex differences found in mood disorders.

6.
Biol Psychiatry ; 92(12): 952-963, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-35977861

RESUMO

BACKGROUND: Selective serotonin reuptake inhibitors such as fluoxetine have a limited treatment efficacy. The mechanism by which some patients respond to fluoxetine while others do not remains poorly understood, limiting treatment effectiveness. We have found the opioid system to be involved in the responsiveness to fluoxetine treatment in a mouse model for anxiety- and depressive-like behavior. METHODS: We analyzed gene expression changes in the dentate gyrus of mice chronically treated with corticosterone and fluoxetine. After identifying a subset of genes of interest, we studied their expression patterns in relation to treatment responsiveness. We further characterized their expression through in situ hybridization and the analysis of a single-cell RNA sequencing dataset. Finally, we behaviorally tested mu and delta opioid receptor knockout mice in the novelty suppressed feeding test and the forced swim test after chronic corticosterone and fluoxetine treatment. RESULTS: Chronic fluoxetine treatment upregulates proenkephalin expression in the dentate gyrus, and this upregulation is associated with treatment responsiveness. The expression of several of the most significantly upregulated genes, including proenkephalin, is localized to an anatomically and transcriptionally specialized subgroup of mature granule cells in the dentate gyrus. We have also found that the delta opioid receptor contributes to some, but not all, of the behavioral effects of fluoxetine. CONCLUSIONS: These data indicate that the opioid system is involved in the antidepressant effects of fluoxetine, and this effect may be mediated through the upregulation of proenkephalin in a subpopulation of mature granule cells.


Assuntos
Analgésicos Opioides , Fluoxetina , Camundongos , Animais , Fluoxetina/farmacologia , Analgésicos Opioides/farmacologia , Corticosterona , Receptores Opioides delta/genética , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Camundongos Knockout
7.
Behav Brain Res ; 413: 113466, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34271036

RESUMO

Autism spectrum disorder (ASD) is a pervasive neurodevelopmental disorder characterized by impairments in social interaction, cognition, and communication, as well as the presence of repetitive or stereotyped behaviors and interests. ASD is most often studied as a neurodevelopmental disease, but it is a lifelong disorder. Adults with ASD experience more stressful life events and greater perceived stress, and frequently have comorbid mood disorders such as anxiety and depression. It remains unclear whether adult exposure to chronic stress can exacerbate the behavioral and neurodevelopmental phenotypes associated with ASD. To address this issue, we first investigated whether adult male and female Engrailed-2 deficient (En2-KO, En2-/-) mice, which display behavioral disturbances in avoidance tasks and dysregulated monoaminergic neurotransmitter levels, also display impairments in instrumental behaviors associated with motivation, such as the progressive ratio task. We then exposed adult En2-KO mice to chronic environmental stress (CSDS, chronic social defeat stress), to determine if stress exacerbated the behavioral and neuroanatomical effects of En2 deletion. En2-/- mice showed impaired instrumental acquisition and significantly lower breakpoints in a progressive ratio test, demonstrating En2 deficiency decreases motivation to exert effort for reward. Furthermore, adult CSDS exposure increased avoidance behaviors in En2-KO mice. Interestingly, adult CSDS exposure also exacerbated the deleterious effects of En2 deficiency on forebrain-projecting monoaminergic fibers. Our findings thus suggest that adult exposure to stress may exacerbate behavioral and neuroanatomical phenotypes associated with developmental effects of genetic En2 deficiency.


Assuntos
Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/fisiopatologia , Aprendizagem da Esquiva/fisiologia , Comportamento Animal/fisiologia , Interação Gene-Ambiente , Motivação/fisiologia , Proteínas do Tecido Nervoso/deficiência , Estresse Psicológico/fisiopatologia , Animais , Modelos Animais de Doenças , Feminino , Proteínas de Homeodomínio , Masculino , Camundongos
8.
Front Behav Neurosci ; 15: 643272, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33716685

RESUMO

The basolateral amygdala (BLA) is critical for reward behaviors via a projection to the nucleus accumbens (NAc). Specifically, BLA-NAc projections are involved in reinforcement learning, reward-seeking, sustained instrumental responding, and risk behaviors. However, it remains unclear whether chronic stress interacts with BLA-NAc projection neurons to result in maladaptive behaviors. Here we take a chemogenetic, projection-specific approach to clarify how NAc-projecting BLA neurons affect avoidance, reward, and feeding behaviors in male mice. Then, we examine whether chemogenetic activation of NAc-projecting BLA neurons attenuates the maladaptive effects of chronic corticosterone (CORT) administration on these behaviors. CORT mimics the behavioral and neural effects of chronic stress exposure. We found a nuanced role of BLA-NAc neurons in mediating reward behaviors. Surprisingly, activation of BLA-NAc projections rescues CORT-induced deficits in the novelty suppressed feeding, a behavior typically associated with avoidance. Activation of BLA-NAc neurons also increases instrumental reward-seeking without affecting free-feeding in chronic CORT mice. Taken together, these data suggest that NAc-projecting BLA neurons are involved in chronic CORT-induced maladaptive reward and motivation behaviors.

9.
Neurobiol Stress ; 13: 100257, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33344712

RESUMO

Depression is a complex psychiatric disorder that is a major burden on society, with only ~33% of depressed patients attaining remission upon initial monotherapy with a selective serotonin reuptake inhibitor (SSRI). In preclinical studies using rodents, chronic stress paradigms, such as chronic corticosterone and social instability stress, are used to induce avoidance behaviors associated with negative affective states. Chronic fluoxetine (FLX; an SSRI) treatment reverses these chronic stress-induced behavioral changes in some, but not all mice, permitting stratification of mice into behavioral responders and non-responders to FLX. We previously reported that 5-HT1A receptors, which are Gi-coupled inhibitory receptors, on mature granule cells (GCs) in the dentate gyrus (DG) are necessary and sufficient for the behavioral, neurogenic, and neuroendocrine response to chronic SSRI treatment. Since inhibition of mature DG GCs through cell autonomous Gi-coupled receptors is critical for mounting an antidepressant response, we assessed the relationship between behavioral response to FLX and DG GC activation in FLX responders, non-responders, and stress controls in both male and female mice. Intriguingly, using disparate stress paradigms, we found that male and female behavioral FLX responders show decreased DG GC activation (as measured by cFos immunostaining) relative to non-responders and stress controls. We then show in both sexes that chronic inhibition of ventral DG GCs (through usage of Gi-DREADDs) results in a decrease in maladaptive avoidance behaviors, while ventral DG GCs stimulation with Gq-DREADDs increases maladaptive behaviors. Finally, we were able to bidirectionally control the behavioral response to FLX through modulation of DG GCs. Chronic inhibition of ventral DG GCs with Gi-DREADDs converted FLX non-responders into responders, while activation of ventral DG GCs with Gq-DREADDs converted FLX responders into non-responders. This study illustrates ventral DG GC activity is a major modulator of the behavioral response to FLX in both male and female mice.

10.
Transl Psychiatry ; 10(1): 396, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177511

RESUMO

Early-life stress (ELS) leads to stress-related psychopathology in adulthood. Although dysfunction of corticotropin-releasing hormone (CRH) signaling in the bed nucleus of the stria terminalis (BNST) mediates chronic stress-induced maladaptive affective behaviors that are historically associated with mood disorders such as anxiety and depression, it remains unknown whether ELS affects CRH function in the adult BNST. Here we applied a well-established ELS paradigm (24 h maternal separation (MS) at postnatal day 3) and assessed the effects on CRH signaling and electrophysiology in the oval nucleus of BNST (ovBNST) of adult male mouse offspring. ELS increased maladaptive affective behaviors, and amplified mEPSCs and decreased M-currents (a voltage-gated K+ current critical for stabilizing membrane potential) in ovBNST CRH neurons, suggesting enhanced cellular excitability. Furthermore, ELS increased the numbers of CRH+ and PACAP+ (the pituitary adenylate cyclase-activating polypeptide, an upstream CRH regulator) cells and decreased STEP+ (striatal-enriched protein tyrosine phosphatase, a CRH inhibitor) cells in BNST. Interestingly, ELS also increased BNST brain-derived neurotrophic factor (BDNF) expression, indicating enhanced neuronal plasticity. These electrophysiological and behavioral effects of ELS were reversed by chronic application of the CRHR1-selective antagonist R121919 into ovBNST, but not when BDNF was co-administered. In addition, the neurophysiological effects of BDNF on M-currents and mEPSCs in BNST CRH neurons mimic effects and were abolished by PKC antagonism. Together, our findings indicate that ELS results in a long-lasting activation of CRH signaling in the mouse ovBNST. These data highlight a regulatory role of CRHR1 in the BNST and for BDNF signaling in mediating ELS-induced long-term behavioral changes.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Hormônio Liberador da Corticotropina , Núcleos Septais , Estresse Psicológico , Animais , Masculino , Camundongos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Privação Materna , Núcleos Septais/metabolismo
11.
Neurotoxicol Teratol ; 79: 106884, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32289443

RESUMO

Endocrine-disrupting compounds (EDCs) are common contaminants in our environment that interfere with typical endocrine function. EDCs can act on steroid and nuclear receptors or alter hormone production. One particular EDC of critical concern is bisphenol A (BPA) due to its potential harm during the perinatal period of development. Previous studies suggest that perinatal exposure to BPA alters several neurotransmitter systems and disrupts behaviors associated with depression and anxiety in the rodent offspring later in life. Thus, dysregulation in neurotransmission may translate to behavioral phenotypes observed in mood and arousal. Many of the systems disrupted by BPA also overlap with the stress system, although little evidence exists on the effects of perinatal BPA exposure in relation to stress and behavior. The purpose of this review is to explore studies involved in perinatal BPA exposure and the stress response at neurochemical and behavioral endpoints. Although more research is needed, we suggest that perinatal BPA exposure is likely inducing variations in behavioral phenotypes that modulate their action through dysregulation of neurotransmitter systems sensitive to stress and endocrine disruption.


Assuntos
Ansiedade/induzido quimicamente , Compostos Benzidrílicos/toxicidade , Encéfalo/efeitos dos fármacos , Depressão/induzido quimicamente , Disruptores Endócrinos/toxicidade , Exposição Ambiental , Fenóis/toxicidade , Estresse Psicológico/induzido quimicamente , Animais , Comportamento Animal/efeitos dos fármacos , Sistema Endócrino/efeitos dos fármacos , Feminino , Humanos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/psicologia
12.
J Neurosci ; 40(12): 2519-2537, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32054675

RESUMO

The bed nucleus of the stria terminalis (BNST) is a forebrain region highly responsive to stress that expresses corticotropin-releasing hormone (CRH) and is implicated in mood disorders, such as anxiety. However, the exact mechanism by which chronic stress induces CRH-mediated dysfunction in BNST and maladaptive behaviors remains unclear. Here, we first confirmed that selective acute optogenetic activation of the oval nucleus BNST (ovBNST) increases maladaptive avoidance behaviors in male mice. Next, we found that a 6 week chronic variable mild stress (CVMS) paradigm resulted in maladaptive behaviors and increased cellular excitability of ovBNST CRH neurons by potentiating mEPSC amplitude, altering the resting membrane potential, and diminishing M-currents (a voltage-gated K+ current that stabilizes membrane potential) in ex vivo slices. CVMS also increased c-fos+ cells in ovBNST following handling. We next investigated potential molecular mechanism underlying the electrophysiological effects and observed that CVMS increased CRH+ and pituitary adenylate cyclase-activating polypeptide+ (PACAP; a CRH upstream regulator) cells but decreased striatal-enriched protein tyrosine phosphatase+ (a STEP CRH inhibitor) cells in ovBNST. Interestingly, the electrophysiological effects of CVMS were reversed by CRHR1-selective antagonist R121919 application. CVMS also activated protein kinase A (PKA) in BNST, and chronic infusion of the PKA-selective antagonist H89 into ovBNST reversed the effects of CVMS. Coadministration of the PKA agonist forskolin prevented the beneficial effects of R121919. Finally, CVMS induced an increase in surface expression of phosphorylated GluR1 (S845) in BNST. Collectively, these findings highlight a novel and indispensable stress-induced role for PKA-dependent CRHR1 signaling in activating BNST CRH neurons and mediating maladaptive behaviors.SIGNIFICANCE STATEMENT Chronic stress and acute activation of oval bed nucleus of the stria terminalis (ovBNST) induces maladaptive behaviors in rodents. However, the precise molecular and electrophysiological mechanisms underlying these effects remain unclear. Here, we demonstrate that chronic variable mild stress activates corticotropin-releasing hormone (CRH)-associated stress signaling and CRH neurons in ovBNST by potentiating mEPSC amplitude and decreasing M-current in male mice. These electrophysiological alterations and maladaptive behaviors were mediated by BNST protein kinase A-dependent CRHR1 signaling. Our results thus highlight the importance of BNST CRH dysfunction in chronic stress-induced disorders.


Assuntos
Adaptação Psicológica , Hormônio Liberador da Corticotropina/fisiologia , Núcleos Septais/fisiologia , Transdução de Sinais/fisiologia , Estresse Psicológico/psicologia , Animais , Doença Crônica , Hormônio Liberador da Corticotropina/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fenômenos Eletrofisiológicos/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Genes fos , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Canais de Potássio/fisiologia , Proteínas Tirosina Fosfatases/metabolismo , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores
13.
Transl Psychiatry ; 9(1): 337, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31822658

RESUMO

Behavioral approaches utilizing rodents to study mood disorders have focused primarily on negative valence behaviors associated with potential threat (anxiety-related behaviors). However, for disorders such as depression, positive valence behaviors that assess reward processing may be more translationally valid and predictive of antidepressant treatment outcome. Chronic corticosterone (CORT) administration is a well-validated pharmacological stressor that increases avoidance in negative valence behaviors associated with anxiety1-4. However, whether chronic stress paradigms such as CORT administration also lead to deficits in positive valence behaviors remains unclear. We treated male C57BL/6J mice with chronic CORT and assessed both negative and positive valence behaviors. We found that CORT induced avoidance in the open field and NSF. Interestingly, CORT also impaired instrumental acquisition, reduced sensitivity to a devalued outcome, reduced breakpoint in progressive ratio, and impaired performance in probabilistic reversal learning. Taken together, these results demonstrate that chronic CORT administration at the same dosage both induces avoidance in negative valence behaviors associated with anxiety and impairs positive valence behaviors associated with reward processing. These data suggest that CORT administration is a useful experimental system for preclinical approaches to studying stress-induced mood disorders.


Assuntos
Ansiedade/induzido quimicamente , Comportamento Animal/efeitos dos fármacos , Corticosterona/farmacologia , Modelos Animais de Doenças , Aprendizagem/efeitos dos fármacos , Esteroides/farmacologia , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Corticosterona/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Recompensa , Esteroides/administração & dosagem
14.
Neuropharmacology ; 160: 107780, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31536736

RESUMO

Despite stress-associated disorders having a higher incidence rate in females, preclinical research mainly focuses on males. Chronic stress paradigms, such as chronic social defeat and chronic corticosterone (CORT) administration, were mainly designed and validated in males and subsequent attempts to use these paradigms in females has demonstrated sex differences in the behavioral and HPA axis response to stress. Here, we assessed the behavioral response to chronic CORT exposure and developed a social stress paradigm, social instability stress (SIS), which exposes adult mice to unstable social hierarchies every 3 days for 7 weeks. Sex differences in response to chronic CORT emerged, with negative valence behaviors induced in CORT treated males, not females. SIS effectively induces negative valence behaviors in the open field, light dark, and novelty suppressed feeding tests, increases immobility in the forced swim test, and activates the hypothalamus-pituitary-adrenal (HPA) axis in both males and females. Importantly, while there were effects of estrous cycle on behavior, this variability did not impact the overall effects of SIS on behavior, suggesting estrous does not need to be tracked while utilizing SIS. Furthermore, the effects of SIS on negative valence behaviors were also reversed following chronic antidepressant treatment with fluoxetine (FLX) in both males and females. SIS also reduced adult hippocampal neurogenesis in female mice, while chronic FLX treatment increased adult hippocampal neurogenesis in both males and females. Overall, these data demonstrate that the SIS paradigm is an ethologically valid approach that effectively induces chronic stress in both adult male and adult female mice.


Assuntos
Comportamento Animal , Comportamento Social , Estresse Psicológico/psicologia , Animais , Antidepressivos de Segunda Geração/administração & dosagem , Ansiedade/induzido quimicamente , Ansiedade/tratamento farmacológico , Corticosterona/administração & dosagem , Corticosterona/efeitos adversos , Modelos Animais de Doenças , Ciclo Estral , Feminino , Fluoxetina/administração & dosagem , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Masculino , Camundongos , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Caracteres Sexuais , Meio Social , Estresse Psicológico/tratamento farmacológico
15.
Sci Rep ; 7: 42946, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28218311

RESUMO

Strategies designed to increase adult hippocampal neurogenesis (AHN) may have therapeutic potential for reversing memory impairments. H3 receptor antagonists/inverse agonists also may be useful for treating cognitive deficits. However, it remains unclear whether these ligands have effects on AHN. The present study aimed to investigate the effects of a 28-day treatment with S 38093, a novel brain-penetrant antagonist/inverse agonist of H3 receptors, on AHN (proliferation, maturation and survival) in 3-month-old and in aged 16-month-old mice. In addition, the effects of S 38093 treatment on 7-month-old APPSWE Tg2576 transgenic mice, a model of Alzheimer's disease, were also assessed. In all tested models, chronic treatment with S 38093 stimulated all steps of AHN. In aged animals, S 38093 induced a reversal of age-dependent effects on hippocampal brain-derived neurotrophic factor (BDNF) BDNF-IX, BDNF-IV and BDNF-I transcripts and increased vascular endothelial growth factor (VEGF) expression. Finally, the effects of chronic administration of S 38093 were assessed on a neurogenesis-dependent "context discrimination (CS) test" in aged mice. While ageing altered mouse CS, chronic S 38093 treatment significantly improved CS. Taken together, these results provide evidence that chronic S 38093 treatment increases adult hippocampal neurogenesis and may provide an innovative strategy to improve age-associated cognitive deficits.


Assuntos
Envelhecimento , Compostos Azabicíclicos/farmacologia , Comportamento Animal/efeitos dos fármacos , Benzamidas/farmacologia , Antagonistas dos Receptores Histamínicos H3/farmacologia , Neurogênese/efeitos dos fármacos , Doença de Alzheimer/patologia , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proliferação de Células/efeitos dos fármacos , Giro Denteado/metabolismo , Modelos Animais de Doenças , Agonismo Inverso de Drogas , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
16.
Front Behav Neurosci ; 8: 208, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25018708

RESUMO

Depression is a complex and heterogeneous disorder affecting millions of Americans. There are several different medications and other treatments that are available and effective for many patients with depression. However, a substantial percentage of patients fail to achieve remission with these currently available interventions, and relapse rates are high. Therefore, it is necessary to determine both the mechanisms underlying the antidepressant response and the differences between responders and non-responders to treatment. Delineation of these mechanisms largely relies on experiments that utilize animal models. Therefore, this review provides an overview of the various mouse models that are currently used to assess the antidepressant response, such as chronic mild stress, social defeat, and chronic corticosterone. We discuss how these mouse models can be used to advance our understanding of the differences between responders and non-responders to antidepressant treatment. We also provide an overview of experimental treatment modalities that are used for treatment-resistant depression, such as deep brain stimulation and ketamine administration. We will then review the various genetic polymorphisms and transgenic mice that display resistance to antidepressant treatment. Finally, we synthesize the published data to describe a potential neural circuit underlying the antidepressant response and treatment resistance.

17.
PLoS One ; 9(1): e85136, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465494

RESUMO

BACKGROUND: Selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine are the most common form of medication treatment for major depression. However, approximately 50% of depressed patients fail to achieve an effective treatment response. Understanding how gene expression systems respond to treatments may be critical for understanding antidepressant resistance. METHODS: We take a novel approach to this problem by demonstrating that the gene expression system of the dentate gyrus responds to fluoxetine (FLX), a commonly used antidepressant medication, in a stereotyped-manner involving changes in the expression levels of thousands of genes. The aggregate behavior of this large-scale systemic response was quantified with principal components analysis (PCA) yielding a single quantitative measure of the global gene expression system state. RESULTS: Quantitative measures of system state were highly correlated with variability in levels of antidepressant-sensitive behaviors in a mouse model of depression treated with fluoxetine. Analysis of dorsal and ventral dentate samples in the same mice indicated that system state co-varied across these regions despite their reported functional differences. Aggregate measures of gene expression system state were very robust and remained unchanged when different microarray data processing algorithms were used and even when completely different sets of gene expression levels were used for their calculation. CONCLUSIONS: System state measures provide a robust method to quantify and relate global gene expression system state variability to behavior and treatment. State variability also suggests that the diversity of reported changes in gene expression levels in response to treatments such as fluoxetine may represent different perspectives on unified but noisy global gene expression system state level responses. Studying regulation of gene expression systems at the state level may be useful in guiding new approaches to augmentation of traditional antidepressant treatments.


Assuntos
Antidepressivos/uso terapêutico , Comportamento Animal , Giro Denteado/metabolismo , Regulação da Expressão Gênica , Animais , Antidepressivos/farmacologia , Giro Denteado/efeitos dos fármacos , Giro Denteado/patologia , Depressão/tratamento farmacológico , Depressão/genética , Modelos Animais de Doenças , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Componente Principal , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
18.
J Neurosci ; 32(19): 6718-25, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22573694

RESUMO

Anxiety disorders are characterized by persistent fear in the absence of immediate threat and represent the most common psychiatric diseases, with an estimated 28% lifetime prevalence worldwide (Kessler et al., 2010). While symptoms of anxiety are typically evoked by sensory stimuli, it is unknown whether sensory deficits contribute to the development of anxiety disorders. Here we examine the effect of defined genetic mutations that compromise the function of the olfactory system on the development of anxiety-like behaviors in mice. We show that the functional inactivation of the main olfactory epithelium, but not the vomeronasal organ, causes elevated levels of anxiety. Anxiety-like behaviors are also observed in mice with a monoclonal nose, that are able to detect and discriminate odors but in which the patterns of odor-evoked neural activity are perturbed. In these mice, plasma corticosterone levels are elevated, suggesting that olfactory deficits can lead to chronic stress. These results demonstrate a central role for olfactory sensory cues in modulating anxiety in mice.


Assuntos
Ansiedade/genética , Odorantes , Mucosa Olfatória/fisiologia , Olfato/genética , Órgão Vomeronasal/fisiologia , Animais , Ansiedade/sangue , Ansiedade/etiologia , Corticosterona/sangue , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
19.
Eur J Neurosci ; 33(6): 1152-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21395859

RESUMO

The neurogenesis hypothesis of depression was originally formed upon the demonstration that stress impacts levels of adult neurogenesis in the hippocampus. Since then much work has established that newborn neurons in the dentate gyrus are required for mediating some of the beneficial effects of antidepressant treatment. Recent studies combining behavioral, molecular and electrophysiological approaches have attempted to make sense of the role young neurons play in modulating mood by demonstrating a potential role in regulating the circuitry in the brain that underlies depression. Here we discuss the work that led to the neurogenesis hypothesis of depression, and the subsequent studies that have sought to test this hypothesis. We also discuss different animal models of depression that have been used to test the role of neurogenesis in mediating the antidepressant response.


Assuntos
Células-Tronco Adultas/fisiologia , Transtornos do Humor/fisiopatologia , Neurogênese/fisiologia , Células-Tronco Adultas/citologia , Células-Tronco Adultas/efeitos dos fármacos , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Hipocampo/citologia , Hipocampo/fisiologia , Humanos , Transtornos do Humor/tratamento farmacológico , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Estresse Psicológico/fisiopatologia
20.
Neuron ; 67(1): 33-48, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20624590

RESUMO

The psychiatric illness risk gene Disrupted in Schizophrenia-1 (DISC1) plays an important role in brain development; however, it is unclear how DISC1 is regulated during cortical development. Here, we report that DISC1 is regulated during embryonic neural progenitor proliferation and neuronal migration through an interaction with DIX domain containing-1 (Dixdc1), the third mammalian gene discovered to contain a Disheveled-Axin (DIX) domain. We determined that Dixdc1 functionally interacts with DISC1 to regulate neural progenitor proliferation by co-modulating Wnt-GSK3beta/beta-catenin signaling. However, DISC1 and Dixdc1 do not regulate migration via this pathway. During neuronal migration, we discovered that phosphorylation of Dixdc1 by cyclin-dependent kinase 5 (Cdk5) facilitates its interaction with the DISC1-binding partner Ndel1. Furthermore, Dixdc1 phosphorylation and its interaction with DISC1/Ndel1 in vivo is required for neuronal migration. Together, these data reveal that Dixdc1 integrates DISC1 into Wnt-GSK3beta/beta-catenin-dependent and -independent signaling pathways during cortical development and further delineate how DISC1 contributes to neuropsychiatric disorders.


Assuntos
Córtex Cerebral/embriologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Animais , Animais Recém-Nascidos , Bromodesoxiuridina/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Movimento Celular/genética , Movimento Celular/fisiologia , Proliferação de Células , Células Cultivadas , Córtex Cerebral/citologia , Eletroporação/métodos , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Fluorescência Verde/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Luminescentes/genética , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas Associadas aos Microtúbulos , Proteínas do Tecido Nervoso/genética , Gravidez , Ligação Proteica/genética , Interferência de RNA/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Células-Tronco/fisiologia , Transfecção/métodos , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...