Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(35): 21536-21545, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817490

RESUMO

The building evidence for the contribution of microbiota to human disease has spurred an effort to develop therapies that target the gut microbiota. This is particularly evident in inflammatory bowel diseases (IBDs), where clinical trials of fecal microbiota transplantation have shown some efficacy. To aid the development of novel microbiota-targeted therapies and to better understand the biology underpinning such treatments, we have used gnotobiotic mice to model microbiota manipulations in the context of microbiotas from humans with inflammatory bowel disease. Mice colonized with IBD donor-derived microbiotas exhibit a stereotypical set of phenotypes, characterized by abundant mucosal Th17 cells, a deficit in the tolerogenic RORγt+ regulatory T (Treg) cell subset, and susceptibility to disease in colitis models. Transplanting healthy donor-derived microbiotas into mice colonized with human IBD microbiotas led to induction of RORγt+ Treg cells, which was associated with an increase in the density of the microbiotas following transplant. Microbiota transplant reduced gut Th17 cells in mice colonized with a microbiota from a donor with Crohn's disease. By culturing strains from this microbiota and screening them in vivo, we identified a specific strain that potently induces Th17 cells. Microbiota transplants reduced the relative abundance of this strain in the gut microbiota, which was correlated with a reduction in Th17 cells and protection from colitis.


Assuntos
Transplante de Microbiota Fecal , Doenças Inflamatórias Intestinais/microbiologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Animais , Colite/prevenção & controle , Colo/microbiologia , Doença de Crohn/metabolismo , Doença de Crohn/microbiologia , Citocinas/imunologia , Modelos Animais de Doenças , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/imunologia , Humanos , Doenças Inflamatórias Intestinais/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/microbiologia , Células Th17/microbiologia
2.
Front Immunol ; 10: 2051, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31620118

RESUMO

Group 2 Innate lymphoid cells (ILC2) contribute significantly to allergic inflammation. However, the role of microbiota on ILC2s remains to be unraveled. Here we show that short chain fatty acids (SCFAs), such as butyrate, derived from fermentation of dietary fibers by the gut microbiota inhibit pulmonary ILC2 functions and subsequent development of airway hyperreactivity (AHR). We further show that SCFAs modulate GATA3, oxidative phosphorylation, and glycolytic metabolic pathways in pulmonary ILC2s. The observed phenotype is associated with increased IL-17a secretion by lung ILC2s and linked to enhanced neutrophil recruitment to the airways. Finally, we show that butyrate-producing gut bacteria in germ-free mice effectively suppress ILC2-driven AHR. Collectively, our results demonstrate a previously unrecognized role for microbial-derived SCFAs on pulmonary ILC2s in the context of AHR. The data suggest strategies aimed at modulating metabolomics and microbiota in the gut, not only to treat, but to prevent lung inflammation and asthma.


Assuntos
Asma , Ácido Butírico/imunologia , Fibras na Dieta/administração & dosagem , Microbioma Gastrointestinal , Linfócitos/imunologia , Neutrófilos/imunologia , Animais , Asma/imunologia , Asma/microbiologia , Asma/patologia , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , Imunidade Inata/efeitos dos fármacos , Inflamação/imunologia , Inflamação/patologia , Linfócitos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Neutrófilos/patologia
3.
J Allergy Clin Immunol ; 141(4): 1220-1230, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28734844

RESUMO

BACKGROUND: Human rhinoviruses (HRVs) commonly precipitate asthma exacerbations. Toll-like receptor 3, an innate pattern recognition receptor, is triggered by HRV, driving inflammation that can worsen asthma. OBJECTIVE: We sought to evaluate an inhibitory mAb to Toll-like receptor 3, CNTO3157, on experimental HRV-16 inoculation in healthy subjects and asthmatic patients. METHODS: In this double-blind, multicenter, randomized, parallel-group study in North America and Europe, healthy subjects and patients with mild-to-moderate stable asthma received single or multiple doses of CNTO3157 or placebo, respectively, and were then inoculated with HRV-16 within 72 hours. All subjects were monitored for respiratory symptoms, lung function, and nasal viral load. The primary end point was maximal decrease in FEV1 during 10 days after inoculation. RESULTS: In asthmatic patients (n = 63) CNTO3157 provided no protection against FEV1 decrease (least squares mean: CNTO3157 [n = 30] = -7.08% [SE, 8.15%]; placebo [n = 25] = -5.98% [SE, 8.56%]) or symptoms after inoculation. In healthy subjects (n = 12) CNTO3157 versus placebo significantly attenuated upper (P = .03) and lower (P = .02) airway symptom scores, with area-under-the-curve increases of 9.1 (15.1) versus 34.9 (17.6) and 13.0 (18.4) versus 50.4 (25.9) for the CNTO3157 (n = 8) and placebo (n = 4) groups, respectively, after inoculation. All of the severe and 4 of the nonserious asthma exacerbations occurred while receiving CNTO3157. CONCLUSION: In summary, CNTO3157 was ineffective in attenuating the effect of HRV-16 challenge on lung function, asthma control, and symptoms in asthmatic patients but suppressed cold symptoms in healthy subjects. Other approaches, including blockade of multiple pathways or antiviral agents, need to be sought for this high unmet medical need.


Assuntos
Anti-Inflamatórios/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Asma/tratamento farmacológico , Asma/virologia , Infecções por Picornaviridae/complicações , Rhinovirus , Receptor 3 Toll-Like/antagonistas & inibidores , Adolescente , Adulto , Idoso , Asma/diagnóstico , Asma/imunologia , Progressão da Doença , Método Duplo-Cego , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Infecções por Picornaviridae/tratamento farmacológico , Infecções por Picornaviridae/imunologia , Índice de Gravidade de Doença , Resultado do Tratamento , Adulto Jovem
4.
Respir Res ; 16: 29, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25849954

RESUMO

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a disease associated with a high mortality rate. The initial phase is characterized by induction of inflammatory cytokines and chemokines and influx of circulating inflammatory cells, including macrophages which play a pivotal role in the innate and adaptive immune responses to injury. Growing evidence points to phenotypic heterogeneity and plasticity between various macrophage activation states. METHODS: In this study, gene expression in alveolar macrophages and circulating leukocytes from healthy control subjects and patients with ARDS was assessed by mRNA microarray analysis. RESULTS: Both alveolar macrophages and circulating leukocytes demonstrated up-regulation of genes encoding chemotactic factors, antimicrobial peptides, chemokine receptors, and matrix metalloproteinases. Two genes, the pro-inflammatory S100A12 and the anti-inflammatory IL-1 decoy receptor IL-1R2 were significantly induced in both cell populations in ARDS patients, which was confirmed by protein quantification. Although S100A12 levels did not correlate with disease severity, there was a significant association between early plasma levels of IL-1R2 and APACHE III scores at presentation. Moreover, higher levels of IL-1R2 in plasma were observed in non-survivors as compared to survivors at later stages of ARDS. CONCLUSIONS: These results suggest a hybrid state of alveolar macrophage activation in ARDS, with features of both alternative activation and immune tolerance/deactivation.. Furthermore, we have identified a novel plasma biomarker candidate in ARDS that correlates with the severity of systemic illness and mortality.


Assuntos
Perfilação da Expressão Gênica/métodos , Análise de Sequência com Séries de Oligonucleotídeos , Receptores Tipo II de Interleucina-1/genética , Síndrome do Desconforto Respiratório/genética , APACHE , Adulto , Estudos de Casos e Controles , Feminino , Marcadores Genéticos , Humanos , Leucócitos/imunologia , Leucócitos/metabolismo , Ativação de Macrófagos , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Valor Preditivo dos Testes , Prognóstico , Ensaios Clínicos Controlados Aleatórios como Assunto , Receptores Tipo II de Interleucina-1/sangue , Receptores Tipo II de Interleucina-1/imunologia , Síndrome do Desconforto Respiratório/sangue , Síndrome do Desconforto Respiratório/diagnóstico , Síndrome do Desconforto Respiratório/imunologia , Proteína S100A12/genética , Índice de Gravidade de Doença
5.
Cell Immunol ; 284(1-2): 119-28, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23973875

RESUMO

Plasmacytoid dendritic cells [pDC], also known as type I interferon [IFN] producing cells, play a significant role in the pathogenesis of systemic lupus erythematosus [SLE]. The current study was undertaken to identify novel SLE autoantibody specificities associated with interferon-inducing activity in human pDCs. We found that immune complex mixtures from some Interferon signature negative [IFN-] and all interferon signature positive [IFN+] SLE patients could trigger type I IFN production by pDCs. IgGs from IFN- and IFN+ SLE patients were subsequently screened via a high throughput protein microarray to identify novel auto-antibody specifities that mediate type I IFN production by pDCs. This approach identified five novel autoantibodies that may contribute to type I IFN production by pDCs via a nucleic acid dependent mechanism. The newly identified autoantibody specificities function in a myriad of cell processess and, to date, have not been implicated in SLE pathogenesis.


Assuntos
Complexo Antígeno-Anticorpo/imunologia , Autoanticorpos/imunologia , Células Dendríticas/imunologia , Interferon-alfa/biossíntese , Interferon-alfa/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Autoanticorpos/sangue , Linhagem Celular , Feminino , Humanos , Leucócitos Mononucleares/imunologia , Lúpus Eritematoso Sistêmico/sangue , Análise Serial de Proteínas
6.
J Biol Chem ; 288(12): 8258-8268, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23386607

RESUMO

LL-37 is an antimicrobial peptide produced by human cells that can down-regulate the lipopolysaccharide-induced innate immune responses and up-regulate double-stranded (ds) RNA-induced innate responses through Toll-like receptor 3 (TLR3). The murine LL-37 ortholog, mCRAMP, also inhibited lipopolysaccharide-induced responses, but unlike LL-37, it inhibited viral-induced responses in mouse cells. A fluorescence polarization assay showed that LL-37 was able to bind dsRNA better than mCRAMP. In the human lung epithelial cell line BEAS-2B, LL-37, but not mCRAMP, colocalized with TLR3, and the colocalization was increased in the presence of dsRNA. The presence of poly(I:C) increased the accumulation of LL-37 in Rab5 endosomes. Signaling by cells induced with both LL-37 and poly(I:C) was sensitive to inhibitors that affect clathrin-independent trafficking, whereas signaling by poly(I:C) alone was not, suggesting that the LL-37-poly(I:C) complex trafficked to signaling endosomes by a different mechanism than poly(I:C) alone. siRNA knockdown of known LL-37 receptors identified that FPRL1 was responsible for TLR3 signaling induced by LL-37-poly(I:C). These results show that LL-37 and mCRAMP have different activities in TLR3 signaling and that LL-37 can redirect trafficking of poly(I:C) to effect signaling by TLR3 in early endosomes in a mechanism that involves FPRL1.


Assuntos
Peptídeos Catiônicos Antimicrobianos/fisiologia , Catelicidinas/fisiologia , Poli I-C/farmacologia , Receptores de Formil Peptídeo/metabolismo , Receptores de Lipoxinas/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Endocitose/efeitos dos fármacos , Endossomos/metabolismo , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Dados de Sequência Molecular , Ligação Proteica , Transporte Proteico , Receptores de Formil Peptídeo/fisiologia , Receptores de Lipoxinas/fisiologia , Transdução de Sinais , Receptor 3 Toll-Like/metabolismo , beta-Ciclodextrinas/farmacologia
7.
Metabolism ; 61(11): 1633-45, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22607770

RESUMO

OBJECTIVE: Emerging evidence suggests a link between innate immunity and development of type 2 diabetes mellitus (T2D); however, the molecular mechanisms linking them are not fully understood. Toll-like Receptor 3 (TLR3) is a pathogen pattern recognition receptor that recognizes the double-stranded RNA of microbial or mammalian origin and contributes to immune responses in the context of infections and chronic inflammation. The objective of this study was to determine whether TLR3 activity impacts insulin sensitivity and lipid metabolism. MATERIALS AND METHODS: Wild type (WT) and TLR3 knock-out (TLR3(-/-)) mice were fed a high fat diet (HFD) and submitted to glucose tolerance tests (GTTs) over a period of 33 weeks. In another study, the same group of mice was treated with a neutralizing monoclonal antibody (mAb) against mouse TLR3. RESULTS: TLR3(-/-) mice fed an HFD developed obesity, although they exhibited improved glucose tolerance and lipid profiles compared with WT obese mice. In addition, the increase in liver weight and lipid content normally observed in WT mice on an HFD was significantly ameliorated in TLR3(-/-) mice. These changes were accompanied by up-regulation of genes involved in cholesterol efflux such as PPARδ, LXRα, and LXRα-targeting genes and down-regulation of pro-inflammatory cytokine and chemokine genes in obese TLR3(-/-) mice. Furthermore, global gene expression profiling in liver demonstrated TLR3-specific changes in both lipid biosynthesis and innate immune response pathways. CONCLUSIONS: TLR3 affects glucose and lipid metabolism as well as inflammatory mediators, and findings in this study reveal a new role for TLR3 in metabolic homeostasis. This suggests antagonizing TLR3 may be a beneficial therapeutic approach for the treatment of metabolic diseases.


Assuntos
Fígado Gorduroso/fisiopatologia , Teste de Tolerância a Glucose , Obesidade/fisiopatologia , Receptor 3 Toll-Like/fisiologia , Animais , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Receptor 3 Toll-Like/genética
8.
J Mol Biol ; 421(1): 112-24, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22579623

RESUMO

Toll-like receptor 3 (TLR3) recognizes dsRNA and initiates an innate immune response through the formation of a signaling unit (SU) composed of one double-stranded RNA (dsRNA) and two TLR3 molecules. We report the crystal structure of human TLR3 ectodomain (TLR3ecd) in a quaternary complex with three neutralizing Fab fragments. Fab15 binds an epitope that overlaps the C-terminal dsRNA binding site and, in biochemical assays, blocks the interaction of TLR3ecd with dsRNA, thus directly antagonizing TLR3 signaling through inhibition of SU formation. In contrast, Fab12 and Fab1068 bind TLR3ecd at sites distinct from the N- and C-terminal regions that interact with dsRNA and do not inhibit minimal SU formation with short dsRNA. Molecular modeling based on the co-structure rationalizes these observations by showing that both Fab12 and Fab1068 prevent lateral clustering of SUs along the length of the dsRNA ligand. This model is further supported by cell-based assay results using dsRNA ligands of lengths that support single and multiple SUs. Thus, their antagonism of TLR3 signaling indicates that lateral clustering of SUs is required for TLR3 signal transduction.


Assuntos
RNA de Cadeia Dupla/metabolismo , Receptor 3 Toll-Like/química , Receptor 3 Toll-Like/metabolismo , Afinidade de Anticorpos , Sítios de Ligação , Linhagem Celular , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/metabolismo , Modelos Moleculares , Mutação , Estrutura Terciária de Proteína , Transdução de Sinais , Receptor 3 Toll-Like/genética
9.
PLoS One ; 6(10): e26632, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22039520

RESUMO

BACKGROUND: Toll-like Receptor 3 (TLR3) detects viral dsRNA during viral infection. However, most natural viral dsRNAs are poor activators of TLR3 in cell-based systems, leading us to hypothesize that TLR3 needs additional factors to be activated by viral dsRNAs. The anti-microbial peptide LL37 is the only known human member of the cathelicidin family of anti-microbial peptides. LL37 complexes with bacterial lipopolysaccharide (LPS) to prevent activation of TLR4, binds to ssDNA to modulate TLR9 and ssRNA to modulate TLR7 and 8. It synergizes with TLR2/1, TLR3 and TLR5 agonists to increase IL8 and IL6 production. This work seeks to determine whether LL37 enhances viral dsRNA recognition by TLR3. METHODOLOGY/PRINCIPAL FINDINGS: Using a human bronchial epithelial cell line (BEAS2B) and human embryonic kidney cells (HEK 293T) transiently transfected with TLR3, we found that LL37 enhanced poly(I:C)-induced TLR3 signaling and enabled the recognition of viral dsRNAs by TLR3. The presence of LL37 also increased the cytokine response to rhinovirus infection in BEAS2B cells and in activated human peripheral blood mononuclear cells. Confocal microscopy determined that LL37 could co-localize with TLR3. Electron microscopy showed that LL37 and poly(I:C) individually formed globular structures, but a complex of the two formed filamentous structures. To separate the effects of LL37 on TLR3 and TLR4, other peptides that bind RNA and transport the complex into cells were tested and found to activate TLR3 signaling in response to dsRNAs, but had no effect on TLR4 signaling. This is the first demonstration that LL37 and other RNA-binding peptides with cell penetrating motifs can activate TLR3 signaling and facilitate the recognition of viral ligands. CONCLUSIONS/SIGNIFICANCE: LL37 and several cell-penetrating peptides can enhance signaling by TLR3 and enable TLR3 to respond to viral dsRNA.


Assuntos
Peptídeos Catiônicos Antimicrobianos/fisiologia , Catelicidinas/fisiologia , RNA de Cadeia Dupla/metabolismo , Rhinovirus/genética , Transdução de Sinais/fisiologia , Receptor 3 Toll-Like/metabolismo , Sequência de Aminoácidos , Catelicidinas/química , Linhagem Celular , Humanos , Microscopia Confocal , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Poli I-C/química , Homologia de Sequência de Aminoácidos
10.
Cell Immunol ; 267(1): 9-16, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21092943

RESUMO

Toll-like receptor 3 (TLR3) binds and signals in response to dsRNA and poly(I:C), a synthetic double stranded RNA analog. Activation of TLR3 triggers innate responses that may play a protective or detrimental role in viral infections or in immune-mediated inflammatory diseases through amplification of inflammation. Two monoclonal antibodies, CNTO4685 (rat anti-mouse TLR3) and CNTO5429 (CDRs from CNTO4685 grafted onto a mouse IgG1 scaffold) were generated and characterized. These mAbs bind the extracellular domain of mouse TLR3, inhibit poly(I:C)-induced activation of HEK293T cells transfected with mTLR3, and reduce poly(I:C)-induced production of CCL2 and CXCL10 by primary mouse embryonic fibroblasts. CNTO5429 decreased serum IL-6 and TNFα levels post-intraperitoneal poly(I:C) administration, demonstrating in vivo activity. In summary, specific anti-mTLR3 mAbs have been generated to assess TLR3 antagonism in mouse models of inflammation.


Assuntos
Anticorpos Monoclonais/imunologia , Poli I-C/imunologia , Receptor 3 Toll-Like/imunologia , Animais , Linhagem Celular , Células Cultivadas , Humanos , Inflamação/imunologia , Espaço Intracelular/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptor 3 Toll-Like/genética
11.
J Biol Chem ; 285(47): 36635-44, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-20855885

RESUMO

The innate immune receptor Toll-like receptor 3 (TLR3) can be present on the surface of the plasma membranes of cells and in endolysosomes. The Unc93b1 protein has been reported to facilitate localization of TLR7 and 9 and is required for TLR3, -7, and -9 signaling. We demonstrate that siRNA knockdown of Unc93b1 reduced the abundance of TLR3 on the cell surface without altering total TLR3 accumulation. In addition, siRNA to Unc93b1 reduced the secretion of the TLR3 ectodomain (T3ECD) into the cell medium. Furthermore, two human single nucleotide polymorphisms that affected herpesvirus and influenza virus encephalopathy as well as a natural isoform generated by alternative splicing were found to be impaired for T3ECD secretion and decreased the abundance of TLR3 on the cell surface. The locations of the SNP P554S and the deletion in the isoform led to the identification of a loop in the TLR3 ectodomain that is required for secretion and a second whose presence decreased secretion. Finally, a truncated protein containing the N-terminal 10 leucine-rich repeats of T3ECD was sufficient for secretion in an Unc93b1-dependent manner.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Sequência de Aminoácidos , Western Blotting , Membrana Celular/metabolismo , Células Cultivadas , Glicosilação , Humanos , Rim/citologia , Rim/metabolismo , Luciferases/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Transdução de Sinais
12.
Cell Immunol ; 260(2): 98-104, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19878930

RESUMO

Nontypeable Haemophilus influenzae (NTHi) is the etiological agent most frequently associated with bacterial exacerbations of chronic obstructive pulmonary disease (COPD). The present work shows that NTHi strains induced in primary normal human bronchial epithelial cells (NHBE) a cytokine/chemokine response in which CCL-5 and CXCL-10 were predominant. Production of both cytokines was inhibited by an anti-TLR3 monoclonal antibody (mAb) in a dose-dependent manner, but not by control human IgG4 antibodies, thus suggesting a TLR3-dependency of the NTHi stimulation. BEAS-2B, an immortalized human bronchial epithelial cell line, also showed a similar NTHi-induced response that was inhibited by the anti-TLR3 mAb. A BEAS-2B cell line stably expressing TLR3 siRNA showed significantly reduced cytokine/chemokine responses to NTHi stimulation, confirming the role of TLR3 in the response. These results indicate that TLR3 is a key component in the response of human bronchial epithelial cells to NTHi, and suggest that cognate neutralizing mAbs might be a useful therapeutic tool to regulate the inflammatory response.


Assuntos
Brônquios/citologia , Células Epiteliais/microbiologia , Haemophilus influenzae/fisiologia , Receptor 3 Toll-Like/metabolismo , Anticorpos Monoclonais/farmacologia , Linhagem Celular , Células Cultivadas , Quimiocina CCL5/metabolismo , Quimiocina CXCL10/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Interferência de RNA , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/imunologia
13.
Am J Physiol Lung Cell Mol Physiol ; 297(3): L530-7, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19542247

RESUMO

Respiratory infections exacerbate chronic lung diseases promoting airway inflammation and hyperreactivity. Toll-like receptor 3 (TLR3) recognizes viral double-stranded (ds) RNA such as polyinosinic-polycytidylic acid [poly(I:C)] and stimulates innate immune responses. The objective of this study was to test the hypothesis that dsRNA promotes lung inflammation and alters airway responsiveness to cholinergic and beta-adrenergic receptor agonists in human lung slices. Human airway smooth muscle (ASM) was incubated for 24 h in poly(I:C) +/- TNFalpha and a TLR3 monoclonal antibody. Precision-cut lung slices (PCLS; 250-microm thickness) from healthy human lungs containing a small airway were incubated in 0, 10, or 100 microg/ml poly(I:C) for 24 h. Intravital microscopy of lung slices was used to quantify contractile and relaxation responsiveness to carbachol and isoproterenol, respectively. Supernatants of ASM and PCLS were analyzed for cytokine secretion using a 25-multiplex bead assay. In human ASM, poly(I:C) (0.5 microg/ml) increased macrophage inflammatory protein-1alpha (MIP-1alpha) and RANTES that was prevented by a TLR3 monoclonal receptor antibody. Incubation of human PCLS with poly(I:C) (10 and 100 microg/ml) had little effect on the log EC(50) or maximum drug effect (E(max)) for contraction and relaxation in response to carbachol and isoproterenol, respectively. The responsiveness of the same human PCLS to poly(I:C) incubation was confirmed by the robust increase in chemokines and cytokines. In separate experiments, incubation of PCLS with IL-13 or TNFalpha (100 ng/ml) increased airway sensitivity to carbachol. Poly(I:C) promotes inflammatory mediator release that was not associated with enhanced bronchoconstriction or attenuated bronchodilation in normal healthy human lung slices. Transduction at the TLR3 initiated by dsRNA stimulates downstream innate immune responses.


Assuntos
Citocinas/metabolismo , Contração Muscular/efeitos dos fármacos , Relaxamento Muscular/efeitos dos fármacos , Poli I-C/farmacologia , Receptor 3 Toll-Like/metabolismo , Traqueia/efeitos dos fármacos , Traqueia/fisiologia , Quimiocinas/metabolismo , Humanos , Técnicas In Vitro , Interleucina-13/farmacologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Traqueia/citologia , Fator de Necrose Tumoral alfa/farmacologia
14.
Respir Res ; 10: 43, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19486528

RESUMO

BACKGROUND: The immune mechanisms associated with infection-induced disease exacerbations in asthma and COPD are not fully understood. Toll-like receptor (TLR) 3 has an important role in recognition of double-stranded viral RNA, which leads to the production of various inflammatory mediators. Thus, an understanding of TLR3 activation should provide insight into the mechanisms underlying virus-induced exacerbations of pulmonary diseases. METHODS: TLR3 knock-out (KO) mice and C57B6 (WT) mice were intranasally administered repeated doses of the synthetic double stranded RNA analog poly(I:C). RESULTS: There was a significant increase in total cells, especially neutrophils, in BALF samples from poly(I:C)-treated mice. In addition, IL-6, CXCL10, JE, KC, mGCSF, CCL3, CCL5, and TNFalpha were up regulated. Histological analyses of the lungs revealed a cellular infiltrate in the interstitium and epithelial cell hypertrophy in small bronchioles. Associated with the pro-inflammatory effects of poly(I:C), the mice exhibited significant impairment of lung function both at baseline and in response to methacholine challenge as measured by whole body plethysmography and an invasive measure of airway resistance. Importantly, TLR3 KO mice were protected from poly(I:C)-induced changes in lung function at baseline, which correlated with milder inflammation in the lung, and significantly reduced epithelial cell hypertrophy. CONCLUSION: These findings demonstrate that TLR3 activation by poly(I:C) modulates the local inflammatory response in the lung and suggest a critical role of TLR3 activation in driving lung function impairment. Thus, TLR3 activation may be one mechanism through which viral infections contribute toward exacerbation of respiratory disease.


Assuntos
Inflamação/induzido quimicamente , Poli I-C/farmacologia , Receptor 3 Toll-Like/fisiologia , Animais , Linhagem Celular , Citocinas/metabolismo , Feminino , Humanos , Inflamação/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pletismografia , Testes de Função Respiratória , Receptor 3 Toll-Like/deficiência , Receptor 3 Toll-Like/genética
15.
Cell Immunol ; 248(2): 103-14, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18048020

RESUMO

Toll-like receptors are a family of pattern-recognition receptors that contribute to the innate immune response. Toll-like receptor 3 (TLR3) signals in response to foreign, endogenous and synthetic ligands including viral dsRNA, bacterial RNA, mitochondrial RNA, endogenous necrotic cell mRNA and the synthetic dsRNA analog, poly(I:C). We have generated a monoclonal antibody (mAb CNTO2424) that recognizes the extracellular domain (ECD) of human TLR3 in a conformation-dependent manner. CNTO2424 down-regulates poly(I:C)-induced production of IL-6, IL-8, MCP-1, RANTES, and IP-10 in human lung epithelial cells. In addition, mAb CNTO2424 was able to interfere with the known TLR3-dependent signaling pathways, namely NF-kappaB, IRF-3/ISRE, and p38 MAPK. The generation of this neutralizing anti-TLR3 mAb provides a unique tool to better understand TLR3 signaling and potential cross-talk between TLR3 and other molecules.


Assuntos
Anticorpos Monoclonais , Receptor 3 Toll-Like/antagonistas & inibidores , Receptor 3 Toll-Like/imunologia , Animais , Anticorpos Bloqueadores/metabolismo , Anticorpos Monoclonais/metabolismo , Sítios de Ligação de Anticorpos , Linhagem Celular , Linhagem Celular Transformada , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Projetos Piloto , Receptor 3 Toll-Like/metabolismo
16.
Physiol Genomics ; 26(2): 125-33, 2006 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-16554548

RESUMO

To gain global pathway perspective of ex vivo viral infection models using human peripheral blood mononuclear cells (PBMCs), we conducted expression analysis on PBMCs of healthy donors. RNA samples were collected at 3 and 24 h after PBMCs were challenged with the Toll-like receptor-3 (TLR3) agonist polyinosinic acid-polycytidylic acid [poly(I:C)] and analyzed by internally developed cDNA microarrays and TaqMan PCR. Our results demonstrate that poly(I:C) challenge can elicit certain gene expression changes, similar to acute viral infection. Hierarchical clustering revealed distinct immediate early, early-to-late, and late gene regulation patterns. The early responses were innate immune responses that involve TLR3, the NF-kappaB-dependent pathway, and the IFN-stimulated pathway, whereas the late responses were mostly cell-mediated immune response that involve activation of cell adhesion, cell mobility, and phagocytosis. Overall, our results expanded the utilities of this ex vivo model, which could be used to screen molecules that can modulate viral stress-induced inflammation, in particular those mediated via TLRs.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Indutores de Interferon/farmacologia , Leucócitos Mononucleares/metabolismo , Poli I-C/farmacologia , Análise por Conglomerados , Humanos , Inflamação , Interferons/metabolismo , Modelos Biológicos , NF-kappa B/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fagocitose , Receptor 3 Toll-Like/metabolismo
17.
Cancer Immunol Immunother ; 54(11): 1082-94, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16047142

RESUMO

Prostate specific antigen (PSA) is a serum marker that is widely used in the detection and monitoring of prostate cancer. Though PSA is a self-antigen, T cell responses to PSA epitopes have been detected in healthy men and prostate cancer patients, suggesting it may be used as a target for active immunotherapy of prostate cancer. A PSA DNA vaccine (pPSA) was evaluated in mice and monkeys for its ability to induce antigen-specific immune responses. Mice immunized intradermally with pPSA demonstrated strong PSA-specific humoral and cellular immunity. The anti-PSA immune responses were skewed toward Th1, as shown by high IFNgamma and IL-2 production. The immune response was sufficient to protect mice from challenge with PSA-expressing tumor cells. Tumor protection was durable in the absence of additional vaccination, as demonstrated by protection of vaccinated mice from tumor rechallenge. Furthermore, pPSA vaccination induced PSA-specific antibody titers in male cynomolgus monkeys, which express a closely related PSA gene. These results demonstrate that vaccination with pPSA may be able to break tolerance and can induce an immune response that mediates tumor protection.


Assuntos
Antígeno Prostático Específico/imunologia , Neoplasias da Próstata/prevenção & controle , Células Th1/imunologia , Vacinas de DNA/imunologia , Animais , Anticorpos/sangue , Feminino , Humanos , Imunização , Interferon gama/biossíntese , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Linfócitos T Citotóxicos/imunologia
18.
J Virol ; 78(3): 1150-9, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14722270

RESUMO

Both CD4(+) and CD8(+) T cells are required for clearance of the murine coronavirus mouse hepatitis virus (MHV) during acute infection. We investigated the effects of an epitope-specific CD8(+) T-cell response on acute infection of MHV, strain A59, in the murine CNS. Mice with CD8(+) T cells specific for gp33-41 (an H-2D(b)-restricted CD8(+) T-cell epitope derived from lymphocytic choriomeningitis glycoprotein) were infected with a recombinant MHV-A59, also expressing gp33-41, as a fusion protein with enhanced green fluorescent protein (EGFP). By 5 days postinfection, these mice showed significantly (approximately 20-fold) lower titers of infectious virus in the brain compared to control mice. Furthermore mice with gp33-41-specific CD8(+) cells exhibited much reduced levels of viral antigen in the brain as measured by immunohistochemistry using an antibody directed against viral nucleocapsid. More than 90% of the viruses recovered from brain lysates of such protected mice, at 5 days postinfection, had lost the ability to express EGFP and had deletions in their genomes encompassing EGFP and gp33-41. In addition, genomes of viruses from about half the plaques that retained the EGFP gene had mutations within the gp33-41 epitope. On the other hand, gp33-41-specific cells failed to protect perforin-deficient mice from infection by the recombinant MHV expressing gp33, indicating that perforin-mediated mechanisms were needed. Virus recovered from perforin-deficient mice did not exhibit loss of EGFP expression and the gp33-41 epitope. These observations suggest that the cytotoxic T-cell response to gp33-41 exerts a strong immune pressure that quickly selects epitope escape mutants to gp33-41.


Assuntos
Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/imunologia , Viroses do Sistema Nervoso Central/imunologia , Epitopos/imunologia , Glicoproteínas/imunologia , Vírus da Hepatite Murina/imunologia , Fragmentos de Peptídeos/imunologia , Proteínas Virais/imunologia , Animais , Antígenos Virais/metabolismo , Viroses do Sistema Nervoso Central/prevenção & controle , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Epitopos/genética , Proteínas de Fluorescência Verde , Humanos , Imunização , Proteínas Luminescentes/genética , Proteínas Luminescentes/imunologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Vírus da Hepatite Murina/genética , Vírus da Hepatite Murina/patogenicidade , Mutação , Perforina , Proteínas Citotóxicas Formadoras de Poros , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Replicação Viral
19.
J Immunol ; 171(11): 6032-8, 2003 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-14634115

RESUMO

Memory CD8 T cells play a critical role in protective immunity against intracellular pathogens. In addition to their ability to specifically recognize and lyse infected targets, activated CD8 T cells secrete cytokines that induce phagocytic cells to engulf and kill bacterial pathogens. In this study, we asked whether activation of Ag-specific CD8 T cells results in nonspecific killing of bystander bacteria during a mixed infection. Mice with epitope-specific memory CD8 T cells were coinfected with two isogenic strains of recombinant Listeria monocytogenes that differ in the cognate epitope. Recall responses by epitope-specific CD8 T cells rapidly inhibited the growth of epitope-bearing bacteria, impeding the course of infection within 6 h after challenge. This rapid inhibition was highly specific and did not affect the growth of coinfecting bacteria without the epitope. CTL recall did not enhance activation of innate immune cells, as evidenced by the absence of inducible NO synthase production in infectious foci. Our observations demonstrate the remarkable specificity of the bactericidal mechanisms of CTL and reveal the possibility for escape mutants to prevail in the hostile environment of a specific immune response. This implication has a bearing on subunit vaccine design strategies and understanding failure of immunization against bacterial infection.


Assuntos
Efeito Espectador/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/microbiologia , Citotoxicidade Imunológica/imunologia , Epitopos de Linfócito T/imunologia , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/imunologia , Ativação Linfocitária/imunologia , Sequência de Aminoácidos , Animais , Linfócitos T CD8-Positivos/citologia , Feminino , Memória Imunológica , Listeria monocytogenes/genética , Listeriose/imunologia , Listeriose/microbiologia , Listeriose/patologia , Contagem de Linfócitos , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/microbiologia , Coriomeningite Linfocítica/patologia , Vírus da Coriomeningite Linfocítica/genética , Vírus da Coriomeningite Linfocítica/imunologia , Ativação de Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Nucleoproteínas/administração & dosagem , Nucleoproteínas/genética , Nucleoproteínas/imunologia , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
20.
Infect Immun ; 71(12): 6971-7, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14638786

RESUMO

Haemophilus ducreyi is the etiologic agent of the sexually transmitted genital ulcer disease chancroid. Neither naturally occurring chancroid nor experimental infection with H. ducreyi results in protective immunity. Likewise, a single inoculation of H. ducreyi does not protect pigs against subsequent infection. Accordingly, we used the swine model of chancroid infection to examine the impact of multiple inoculations on a host's immune response. After three successive inoculations with H. ducreyi, pigs developed a modestly protective immune response evidenced by the decreased recovery of viable bacteria from lesions. All lesions biopsied 2 days after the first and second inoculations contained viable H. ducreyi cells, yet only 55% of the lesions biopsied 2 days after the third inoculation did. Nearly 90% of the lesions biopsied 7 days after the first inoculation contained viable H. ducreyi cells, but this percentage dropped to only 16% after the third inoculation. Between the first and third inoculations, the average recovery of CFU from lesions decreased approximately 100-fold. The reduced recovery of bacteria corresponded directly with a fivefold increase in H. ducreyi-specific antibody titers and the emergence of bactericidal activity. These immune sera were protective when administered to naïve pigs prior to challenge with H. ducreyi. These data suggest that pigs mount an effective humoral immune response to H. ducreyi after multiple exposures to the organism.


Assuntos
Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Cancroide/imunologia , Cancroide/prevenção & controle , Haemophilus ducreyi/imunologia , Animais , Especificidade de Anticorpos , Cancroide/microbiologia , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Feminino , Vacinas Anti-Haemophilus/administração & dosagem , Vacinas Anti-Haemophilus/imunologia , Haemophilus ducreyi/isolamento & purificação , Haemophilus ducreyi/patogenicidade , Humanos , Soros Imunes/imunologia , Imunização Passiva , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/microbiologia , Doenças dos Suínos/prevenção & controle , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...