Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4731, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830889

RESUMO

Major antibiotic groups are losing effectiveness due to the uncontrollable spread of antimicrobial resistance (AMR) genes. Among these, ß-lactam resistance genes -encoding ß-lactamases- stand as the most common resistance mechanism in Enterobacterales due to their frequent association with mobile genetic elements. In this context, novel approaches that counter mobile AMR are urgently needed. Collateral sensitivity (CS) occurs when the acquisition of resistance to one antibiotic increases susceptibility to another antibiotic and can be exploited to eliminate AMR selectively. However, most CS networks described so far emerge as a consequence of chromosomal mutations and cannot be leveraged to tackle mobile AMR. Here, we dissect the CS response elicited by the acquisition of a prevalent antibiotic resistance plasmid to reveal that the expression of the ß-lactamase gene blaOXA-48 induces CS to colistin and azithromycin. We next show that other clinically relevant mobile ß-lactamases produce similar CS responses in multiple, phylogenetically unrelated E. coli strains. Finally, by combining experiments with surveillance data comprising thousands of antibiotic susceptibility tests, we show that ß-lactamase-induced CS is pervasive within Enterobacterales. These results highlight that the physiological side-effects of ß-lactamases can be leveraged therapeutically, paving the way for the rational design of specific therapies to block mobile AMR or at least counteract their effects.


Assuntos
Antibacterianos , Escherichia coli , Testes de Sensibilidade Microbiana , beta-Lactamases , beta-Lactamases/genética , beta-Lactamases/metabolismo , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Sensibilidade Colateral a Medicamentos/genética , Plasmídeos/genética , Azitromicina/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Resistência beta-Lactâmica/genética
2.
Nat Commun ; 15(1): 2610, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521779

RESUMO

The rise of antibiotic resistance is a critical public health concern, requiring an understanding of mechanisms that enable bacteria to tolerate antimicrobial agents. Bacteria use diverse strategies, including the amplification of drug-resistance genes. In this paper, we showed that multicopy plasmids, often carrying antibiotic resistance genes in clinical bacteria, can rapidly amplify genes, leading to plasmid-mediated phenotypic noise and transient antibiotic resistance. By combining stochastic simulations of a computational model with high-throughput single-cell measurements of blaTEM-1 expression in Escherichia coli MG1655, we showed that plasmid copy number variability stably maintains populations composed of cells with both low and high plasmid copy numbers. This diversity in plasmid copy number enhances the probability of bacterial survival in the presence of antibiotics, while also rapidly reducing the burden of carrying multiple plasmids in drug-free environments. Our results further support the tenet that multicopy plasmids not only act as vehicles for the horizontal transfer of genetic information between cells but also as drivers of bacterial adaptation, enabling rapid modulation of gene copy numbers. Understanding the role of multicopy plasmids in antibiotic resistance is critical, and our study provides insights into how bacteria can transiently survive lethal concentrations of antibiotics.


Assuntos
Antibacterianos , Escherichia coli , Plasmídeos/genética , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Escherichia coli/genética , Dosagem de Genes , Farmacorresistência Bacteriana/genética
3.
Mol Syst Biol ; 20(4): 311-320, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38409539

RESUMO

Antimicrobial resistance (AMR) in bacteria is a major public health threat and conjugative plasmids play a key role in the dissemination of AMR genes among bacterial pathogens. Interestingly, the association between AMR plasmids and pathogens is not random and certain associations spread successfully at a global scale. The burst of genome sequencing has increased the resolution of epidemiological programs, broadening our understanding of plasmid distribution in bacterial populations. Despite the immense value of these studies, our ability to predict future plasmid-bacteria associations remains limited. Numerous empirical studies have recently reported systematic patterns in genetic interactions that enable predictability, in a phenomenon known as global epistasis. In this perspective, we argue that global epistasis patterns hold the potential to predict interactions between plasmids and bacterial genomes, thereby facilitating the prediction of future successful associations. To assess the validity of this idea, we use previously published data to identify global epistasis patterns in clinically relevant plasmid-bacteria associations. Furthermore, using simple mechanistic models of antibiotic resistance, we illustrate how global epistasis patterns may allow us to generate new hypotheses on the mechanisms associated with successful plasmid-bacteria associations. Collectively, we aim at illustrating the relevance of exploring global epistasis in the context of plasmid biology.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Epistasia Genética , Plasmídeos/genética , Genoma Bacteriano , Bactérias/genética
4.
Nucleic Acids Res ; 52(6): 2961-2976, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38214222

RESUMO

Integrons are genetic platforms that acquire new genes encoded in integron cassettes (ICs), building arrays of adaptive functions. ICs generally encode promoterless genes, whose expression relies on the platform-associated Pc promoter, with the cassette array functioning as an operon-like structure regulated by the distance to the Pc. This is relevant in large sedentary chromosomal integrons (SCIs) carrying hundreds of ICs, like those in Vibrio species. We selected 29 gene-less cassettes in four Vibrio SCIs, and explored whether their function could be related to the transcription regulation of adjacent ICs. We show that most gene-less cassettes have promoter activity on the sense strand, enhancing the expression of downstream cassettes. Additionally, we identified the transcription start sites of gene-less ICs through 5'-RACE. Accordingly, we found that most of the superintegron in Vibrio cholerae is not silent. These promoter cassettes can trigger the expression of a silent dfrB9 cassette downstream, increasing trimethoprim resistance >512-fold in V. cholerae and Escherichia coli. Furthermore, one cassette with an antisense promoter can reduce trimethoprim resistance when cloned downstream. Our findings highlight the regulatory role of gene-less cassettes in the expression of adjacent cassettes, emphasizing their significance in SCIs and their clinical importance if captured by mobile integrons.


Assuntos
Integrons , Vibrio , Integrons/genética , Regiões Promotoras Genéticas , Vibrio/genética , Vibrio cholerae/genética , Vibrionaceae/genética
5.
Proc Natl Acad Sci U S A ; 120(51): e2314135120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38096417

RESUMO

Conjugative plasmids play a key role in the dissemination of antimicrobial resistance (AMR) genes across bacterial pathogens. AMR plasmids are widespread in clinical settings, but their distribution is not random, and certain associations between plasmids and bacterial clones are particularly successful. For example, the globally spread carbapenem resistance plasmid pOXA-48 can use a wide range of enterobacterial species as hosts, but it is usually associated with a small number of specific Klebsiella pneumoniae clones. These successful associations represent an important threat for hospitalized patients. However, knowledge remains limited about the factors determining AMR plasmid distribution in clinically relevant bacteria. Here, we combined in vitro and in vivo experimental approaches to analyze pOXA-48-associated AMR levels and conjugation dynamics in a collection of wild-type enterobacterial strains isolated from hospitalized patients. Our results revealed significant variability in these traits across different bacterial hosts, with Klebsiella spp. strains showing higher pOXA-48-mediated AMR and conjugation frequencies than Escherichia coli strains. Using experimentally determined parameters, we developed a simple mathematical model to interrogate the contribution of AMR levels and conjugation permissiveness to plasmid distribution in bacterial communities. The simulations revealed that a small subset of clones, combining high AMR levels and conjugation permissiveness, play a critical role in stabilizing the plasmid in different polyclonal microbial communities. These results help to explain the preferential association of plasmid pOXA-48 with K. pneumoniae clones in clinical settings. More generally, our study reveals that species- and strain-specific variability in plasmid-associated phenotypes shape AMR evolution in clinically relevant bacterial communities.


Assuntos
Antibacterianos , Permissividade , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana/genética , Plasmídeos/genética , Klebsiella pneumoniae/genética , Klebsiella/genética , Escherichia coli/genética , Bactérias/genética
6.
Microbiology (Reading) ; 169(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37505800

RESUMO

Antimicrobial resistance (AMR) in bacteria is a major public health problem. The main route for AMR acquisition in clinically important bacteria is the horizontal transfer of plasmids carrying resistance genes. AMR plasmids allow bacteria to survive antibiotics, but they also entail physiological alterations in the host cell. Multiple studies over the last few years have indicated that these alterations can translate into a fitness cost when antibiotics are absent. However, due to technical limitations, most of these studies are based on analysing new associations between plasmids and bacteria generated in vitro, and we know very little about the effects of plasmids in their native bacterial hosts. In this study, we used a CRISPR-Cas9-tool to selectively cure plasmids from clinical enterobacteria to overcome this limitation. Using this approach, we were able to study the fitness effects of the carbapenem resistance plasmid pOXA-48 in 35 pOXA-48-carrying isolates recovered from hospitalized patients. Our results revealed that pOXA-48 produces variable effects across the collection of wild-type enterobacterial strains naturally carrying the plasmid, ranging from fitness costs to fitness benefits. Importantly, the plasmid was only associated with a significant fitness reduction in four out of 35 clones, and produced no significant changes in fitness in the great majority of isolates. Our results suggest that plasmids produce neutral fitness effects in most native bacterial hosts, helping to explain the great prevalence of plasmids in natural microbial communities.


Assuntos
Bactérias , Enterobacteriaceae , Humanos , Enterobacteriaceae/genética , Plasmídeos/genética , Bactérias/genética , Antibacterianos/farmacologia , beta-Lactamases/genética
7.
Biology (Basel) ; 12(5)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37237454

RESUMO

Epistasis refers to the way in which genetic interactions between some genetic loci affect phenotypes and fitness. In this study, we propose the concept of "structural epistasis" to emphasize the role of the variable physical interactions between molecules located in particular spaces inside the bacterial cell in the emergence of novel phenotypes. The architecture of the bacterial cell (typically Gram-negative), which consists of concentrical layers of membranes, particles, and molecules with differing configurations and densities (from the outer membrane to the nucleoid) determines and is in turn determined by the cell shape and size, depending on the growth phases, exposure to toxic conditions, stress responses, and the bacterial environment. Antibiotics change the bacterial cell's internal molecular topology, producing unexpected interactions among molecules. In contrast, changes in shape and size may alter antibiotic action. The mechanisms of antibiotic resistance (and their vectors, as mobile genetic elements) also influence molecular connectivity in the bacterial cell and can produce unexpected phenotypes, influencing the action of other antimicrobial agents.

8.
Int Microbiol ; 26(1): 1-9, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36224500

RESUMO

Antimicrobial resistance (AMR) is currently one of the most concerning threats in public health. The efforts to tackle the problem require a global One Health approach, using multidisciplinary approaches and a thorough understanding of the topic both by the general public and the experts. Currently, the lack of a shared mental model of the problem, the absence of a sense of responsibility amongst the different actors and a deficient education on the topic burden the efforts to slow down the emergency and spread of antimicrobial resistant infections. We here propose a multidisciplinary approach to tackle the AMR problem, taking into consideration not only the input from the biological and medical sciences but also the input from the social sciences. Specifically, we suggest strategies from education and psychology to increase awareness about antimicrobial resistance and to implement more effective interventions. Finally, we advocate for a comprehensive and a solidaristic model as the only solution for a problem which knows no borders. As such, political will and international cooperation will be key to achieve the desired change in antibiotic resistance trend.


Assuntos
Anti-Infecciosos , Resistência Microbiana a Medicamentos , Saúde Global , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana
9.
Nat Ecol Evol ; 6(12): 1980-1991, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36303001

RESUMO

Antimicrobial resistance (AMR) in bacteria is a major threat to public health; one of the key elements in the spread and evolution of AMR in clinical pathogens is the transfer of conjugative plasmids. The drivers of AMR evolution have been studied extensively in vitro but the evolution of plasmid-mediated AMR in vivo remains poorly explored. Here, we tracked the evolution of the clinically relevant plasmid pOXA-48, which confers resistance to the last-resort antibiotics carbapenems, in a large collection of enterobacterial clones isolated from the gut of hospitalized patients. Combining genomic and experimental approaches, we first characterized plasmid diversity and the genotypic and phenotypic effects of multiple plasmid mutations on a common genetic background. Second, using cutting-edge genomic editing in wild-type multidrug-resistant enterobacteria, we dissected three cases of within-patient plasmid-mediated AMR evolution. Our results revealed compensatory evolution of plasmid-associated fitness cost and the evolution of enhanced plasmid-mediated AMR in bacteria evolving in the gut of hospitalized patients. Crucially, we observed that the evolution of pOXA-48-mediated AMR in vivo involves a pivotal trade-off between resistance levels and bacterial fitness. This study highlights the need to develop new evolution-informed approaches to tackle plasmid-mediated AMR dissemination.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Humanos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Plasmídeos/genética , Carbapenêmicos/farmacologia , Bactérias/genética
10.
J Antimicrob Chemother ; 77(11): 2960-2963, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-35880751

RESUMO

OBJECTIVES: To investigate the fitness effects of large blaCTX-M-15-harbouring F2:A1:B- plasmids on their native Escherichia coli ST131 H30Rx hosts. METHODS: We selected five E. coli ST131 H30Rx isolates of diverse origin, each carrying an F2:A1:B- plasmid with the blaCTX-M-15 gene. The plasmid was eliminated from each isolate by displacement using an incompatible curing plasmid, pMDP5_cureEC958. WGS was performed to obtain complete chromosome and plasmid sequences of original isolates and to detect chromosomal mutations in 'cured' clones. High-throughput competition assays were conducted to determine the relative fitness of cured clones compared with the corresponding original isolates. RESULTS: We were able to successfully eliminate the F2:A1:B- plasmids from all five original isolates using pMDP5_cureEC958. The F2:A1:B- plasmids produced non-significant fitness effects in three isolates and moderate reductions in relative fitness (3%-4%) in the two remaining isolates. CONCLUSIONS: We conclude that F2:A1:B- plasmids pose low fitness costs in their E. coli ST131 H30Rx hosts. This plasmid-host fitness compatibility is likely to promote the maintenance of antibiotic resistance in this clinically important E. coli lineage.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Humanos , Escherichia coli/genética , beta-Lactamases/genética , beta-Lactamases/farmacologia , Antibacterianos/farmacologia , Plasmídeos/genética
11.
Nat Ecol Evol ; 6(5): 498-499, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35347260
12.
Philos Trans R Soc Lond B Biol Sci ; 377(1842): 20200463, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34839712

RESUMO

Plasmids are key drivers of bacterial evolution because they are crucial agents for the horizontal transfer of adaptive traits, such as antibiotic resistance. Most plasmids entail a metabolic burden that reduces the fitness of their host if there is no selection for plasmid-encoded genes. It has been hypothesized that the translational demand imposed by plasmid-encoded genes is a major mechanism driving the fitness cost of plasmids. Plasmid-encoded genes typically present a different codon usage from host chromosomal genes. As a consequence, the translation of plasmid-encoded genes might sequestrate ribosomes on plasmid transcripts, overwhelming the translation machinery of the cell. However, the pervasiveness and origins of the translation-derived costs of plasmids are yet to be assessed. Here, we systematically altered translation efficiency in the host cell to disentangle the fitness effects produced by six natural antibiotic resistance plasmids. We show that limiting translation efficiency either by reducing the number of available ribosomes or their processivity does not increase plasmid costs. Overall, our results suggest that ribosomal paucity is not a major contributor to plasmid fitness costs. This article is part of the theme issue 'The secret lives of microbial mobile genetic elements'.


Assuntos
Bactérias , Transferência Genética Horizontal , Bactérias/genética , Resistência Microbiana a Medicamentos , Plasmídeos/genética
13.
Front Microbiol ; 12: 606396, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803935

RESUMO

With plasmid-mediated antibiotic resistance thriving and threatening to become a serious public health problem, it is paramount to increase our understanding of the forces that enable the spread and maintenance of drug resistance genes encoded in mobile genetic elements. The relevance of plasmids as vehicles for the dissemination of antibiotic resistance genes, in addition to the extensive use of plasmid-derived vectors for biotechnological and industrial purposes, has promoted the in-depth study of the molecular mechanisms controlling multiple aspects of a plasmids' life cycle. This body of experimental work has been paralleled by the development of a wealth of mathematical models aimed at understanding the interplay between transmission, replication, and segregation, as well as their consequences in the ecological and evolutionary dynamics of plasmid-bearing bacterial populations. In this review, we discuss theoretical models of plasmid dynamics that span from the molecular mechanisms of plasmid partition and copy-number control occurring at a cellular level, to their consequences in the population dynamics of complex microbial communities. We conclude by discussing future directions for this exciting research topic.

14.
Nat Commun ; 12(1): 5845, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615859

RESUMO

Conjugation has classically been considered the main mechanism driving plasmid transfer in nature. Yet bacteria frequently carry so-called non-transmissible plasmids, raising questions about how these plasmids spread. Interestingly, the size of many mobilisable and non-transmissible plasmids coincides with the average size of phages (~40 kb) or that of a family of pathogenicity islands, the phage-inducible chromosomal islands (PICIs, ~11 kb). Here, we show that phages and PICIs from Staphylococcus aureus can mediate intra- and inter-species plasmid transfer via generalised transduction, potentially contributing to non-transmissible plasmid spread in nature. Further, staphylococcal PICIs enhance plasmid packaging efficiency, and phages and PICIs exert selective pressures on plasmids via the physical capacity of their capsids, explaining the bimodal size distribution observed for non-conjugative plasmids. Our results highlight that transducing agents (phages, PICIs) have important roles in bacterial plasmid evolution and, potentially, in antimicrobial resistance transmission.


Assuntos
Ilhas Genômicas/genética , Plasmídeos/genética , Fagos de Staphylococcus/genética , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade
15.
PLoS Biol ; 19(7): e3001308, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34228713

RESUMO

The horizontal transfer of mobile DNA is one of the signature moves of bacterial evolution, but the specific rules that govern this transfer remain elusive. In this PLOS Biology issue, Haudiquet and colleagues revealed that the interactions between mobile genetic elements and the bacterial capsule shape the horizontal flow of DNA in an important bacterial pathogen.


Assuntos
Cápsulas Bacterianas , Transferência Genética Horizontal , Bactérias/genética
16.
Nat Commun ; 12(1): 2653, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976161

RESUMO

Plasmid persistence in bacterial populations is strongly influenced by the fitness effects associated with plasmid carriage. However, plasmid fitness effects in wild-type bacterial hosts remain largely unexplored. In this study, we determined the fitness effects of the major antibiotic resistance plasmid pOXA-48_K8 in wild-type, ecologically compatible enterobacterial isolates from the human gut microbiota. Our results show that although pOXA-48_K8 produced an overall reduction in bacterial fitness, it produced small effects in most bacterial hosts, and even beneficial effects in several isolates. Moreover, genomic results showed a link between pOXA-48_K8 fitness effects and bacterial phylogeny, helping to explain plasmid epidemiology. Incorporating our fitness results into a simple population dynamics model revealed a new set of conditions for plasmid stability in bacterial communities, with plasmid persistence increasing with bacterial diversity and becoming less dependent on conjugation. These results help to explain the high prevalence of plasmids in the greatly diverse natural microbial communities.


Assuntos
Bactérias/genética , Transferência Genética Horizontal , Genes Bacterianos/genética , Variação Genética , Genoma Bacteriano/genética , Plasmídeos/genética , Algoritmos , Antibacterianos/farmacologia , Bactérias/classificação , Farmacorresistência Bacteriana Múltipla/genética , Enterobacteriaceae/classificação , Enterobacteriaceae/genética , Microbioma Gastrointestinal/genética , Humanos , Microbiota/genética , Filogenia , Especificidade da Espécie
17.
Nat Microbiol ; 6(5): 606-616, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33782584

RESUMO

Infections caused by carbapenemase-producing enterobacteria (CPE) are a major concern in clinical settings worldwide. Two fundamentally different processes shape the epidemiology of CPE in hospitals: the dissemination of CPE clones from patient to patient (between-patient transfer), and the transfer of carbapenemase-encoding plasmids between enterobacteria in the gut microbiota of individual patients (within-patient transfer). The relative contribution of each process to the overall dissemination of carbapenem resistance in hospitals remains poorly understood. Here, we used mechanistic models combining epidemiological data from more than 9,000 patients with whole genome sequence information from 250 enterobacteria clones to characterize the dissemination routes of a pOXA-48-like carbapenemase-encoding plasmid in a hospital setting over a 2-yr period. Our results revealed frequent between-patient transmission of high-risk pOXA-48-carrying clones, mostly of Klebsiella pneumoniae and sporadically Escherichia coli. The results also identified pOXA-48 dissemination hotspots within the hospital, such as specific wards and individual rooms within wards. Using high-resolution plasmid sequence analysis, we uncovered the pervasive within-patient transfer of pOXA-48, suggesting that horizontal plasmid transfer occurs in the gut of virtually every colonized patient. The complex and multifaceted epidemiological scenario exposed by this study provides insights for the development of intervention strategies to control the in-hospital spread of CPE.


Assuntos
Antibacterianos/farmacologia , Bactérias/genética , Carbapenêmicos/farmacologia , Infecções por Enterobacteriaceae/microbiologia , Enterobacteriaceae/genética , Microbioma Gastrointestinal , Transferência Genética Horizontal , Plasmídeos/genética , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/isolamento & purificação , Enterobacteriaceae/metabolismo , Infecções por Enterobacteriaceae/terapia , Feminino , Hospitalização , Hospitais Universitários , Humanos , Masculino , Testes de Sensibilidade Microbiana , Filogenia , Plasmídeos/metabolismo , beta-Lactamases/genética , beta-Lactamases/metabolismo
18.
Nat Rev Microbiol ; 19(6): 347-359, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33469168

RESUMO

Plasmids have a key role in bacterial ecology and evolution because they mobilize accessory genes by horizontal gene transfer. However, recent studies have revealed that the evolutionary impact of plasmids goes above and beyond their being mere gene delivery platforms. Plasmids are usually kept at multiple copies per cell, producing islands of polyploidy in the bacterial genome. As a consequence, the evolution of plasmid-encoded genes is governed by a set of rules different from those affecting chromosomal genes, and these rules are shaped by unusual concepts in bacterial genetics, such as genetic dominance, heteroplasmy or segregational drift. In this Review, we discuss recent advances that underscore the importance of plasmids in bacterial ecology and evolution beyond horizontal gene transfer. We focus on new evidence that suggests that plasmids might accelerate bacterial evolution, mainly by promoting the evolution of plasmid-encoded genes, but also by enhancing the adaptation of their host chromosome. Finally, we integrate the most relevant theoretical and empirical studies providing a global understanding of the forces that govern plasmid-mediated evolution in bacteria.


Assuntos
Bactérias/genética , Evolução Biológica , Transferência Genética Horizontal , Genoma Bacteriano , Plasmídeos/fisiologia , Variação Genética
19.
Elife ; 102021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33470194

RESUMO

Collateral sensitivity (CS) is a promising alternative approach to counteract the rising problem of antibiotic resistance (ABR). CS occurs when the acquisition of resistance to one antibiotic produces increased susceptibility to a second antibiotic. Recent studies have focused on CS strategies designed against ABR mediated by chromosomal mutations. However, one of the main drivers of ABR in clinically relevant bacteria is the horizontal transfer of ABR genes mediated by plasmids. Here, we report the first analysis of CS associated with the acquisition of complete ABR plasmids, including the clinically important carbapenem-resistance conjugative plasmid pOXA-48. In addition, we describe the conservation of CS in clinical E. coli isolates and its application to selectively kill plasmid-carrying bacteria. Our results provide new insights that establish the basis for developing CS-informed treatment strategies to combat plasmid-mediated ABR.


Assuntos
Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Sensibilidade Colateral a Medicamentos , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/efeitos dos fármacos , Plasmídeos/fisiologia , Escherichia coli/genética , Plasmídeos/efeitos dos fármacos
20.
Proc Natl Acad Sci U S A ; 117(27): 15755-15762, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32571917

RESUMO

Mobile genetic elements (MGEs), such as plasmids, promote bacterial evolution through horizontal gene transfer (HGT). However, the rules governing the repertoire of traits encoded on MGEs remain unclear. In this study, we uncovered the central role of genetic dominance shaping genetic cargo in MGEs, using antibiotic resistance as a model system. MGEs are typically present in more than one copy per host bacterium, and as a consequence, genetic dominance favors the fixation of dominant mutations over recessive ones. In addition, genetic dominance also determines the phenotypic effects of horizontally acquired MGE-encoded genes, silencing recessive alleles if the recipient bacterium already carries a wild-type copy of the gene. The combination of these two effects governs the catalog of genes encoded on MGEs. Our results help to understand how MGEs evolve and spread, uncovering the neglected influence of genetic dominance on bacterial evolution. Moreover, our findings offer a framework to forecast the spread and evolvability of MGE-encoded genes, which encode traits of key human interest, such as virulence or antibiotic resistance.


Assuntos
Bactérias/genética , Evolução Molecular , Transferência Genética Horizontal/genética , Sequências Repetitivas Dispersas/genética , Farmacorresistência Bacteriana/genética , Humanos , Plasmídeos/genética , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...