Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Invest Dermatol ; 138(10): 2234-2243, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29753031

RESUMO

Despite critical functions in cutaneous health and disease, it is unclear how resident skin microbial communities are altered by topical antimicrobial interventions commonly used in personal and clinical settings. Here we show that acute exposure to antiseptic treatments elicits rapid but short-term depletion of microbial community diversity and membership. Thirteen subjects were enrolled in a longitudinal treatment study to analyze the effects of topical treatments (i.e., ethanol, povidone-iodine, chlorhexidine, and water) on the skin microbiome at two skin sites of disparate microenvironment: forearm and back. Treatment effects were highly dependent on personalized and body site-specific colonization signatures, which concealed community dynamics at the population level when not accounted for in this analysis. The magnitude of disruption was influenced by the identity and abundance of particular bacterial inhabitants. Lowly abundant members of the skin microbiota were more likely to be displaced, and subsequently replaced, by the most abundant taxa prior to treatment. Members of the skin commensal family Propionibactericeae were particularly resilient to treatment, suggesting a distinct competitive advantage in the face of disturbance. These results provide insight into the stability and resilience of the skin microbiome, while establishing the impact of topical antiseptic treatment on skin bacterial dynamics and community ecology.


Assuntos
Anti-Infecciosos Locais/administração & dosagem , Bactérias/genética , DNA Bacteriano/análise , Microbiota/efeitos dos fármacos , Dermatopatias Bacterianas/prevenção & controle , Pele/microbiologia , Administração Cutânea , Adulto , Bactérias/isolamento & purificação , Feminino , Voluntários Saudáveis , Humanos , Masculino , Reação em Cadeia da Polimerase , Pele/efeitos dos fármacos , Dermatopatias Bacterianas/microbiologia , Adulto Jovem
2.
Artigo em Inglês | MEDLINE | ID: mdl-28630195

RESUMO

The skin microbiome is a complex ecosystem with important implications for cutaneous health and disease. Topical antibiotics and antiseptics are often employed to preserve the balance of this population and inhibit colonization by more pathogenic bacteria. However, despite their widespread use, the impact of these interventions on broader microbial communities remains poorly understood. Here, we report the longitudinal effects of topical antibiotics and antiseptics on skin bacterial communities and their role in Staphylococcus aureus colonization resistance. In response to antibiotics, cutaneous populations exhibited an immediate shift in bacterial residents, an effect that persisted for multiple days posttreatment. By contrast, antiseptics elicited only minor changes to skin bacterial populations, with few changes to the underlying microbiota. While variable in scope, both antibiotics and antiseptics were found to decrease colonization by commensal Staphylococcus spp. by sequencing- and culture-based methods, an effect which was highly dependent on baseline levels of Staphylococcus Because Staphylococcus residents have been shown to compete with the skin pathogen S. aureus, we also tested whether treatment could influence S. aureus levels at the skin surface. We found that treated mice were more susceptible to exogenous association with S. aureus and that precolonization with the same Staphylococcus residents that were previously disrupted by treatment reduced S. aureus levels by over 100-fold. In all, the results of this study indicate that antimicrobial drugs can alter skin bacterial residents and that these alterations can have critical implications for cutaneous host defense.


Assuntos
Antibacterianos/farmacologia , Pele/microbiologia , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Administração Cutânea , Animais , Anti-Infecciosos Locais/farmacologia , Feminino , Camundongos , Microbiota/efeitos dos fármacos
3.
J Invest Dermatol ; 136(5): 947-956, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26829039

RESUMO

Culture-independent studies to characterize skin microbiota are increasingly common, due in part to affordable and accessible sequencing and analysis platforms. Compared to culture-based techniques, DNA sequencing of the bacterial 16S ribosomal RNA (rRNA) gene or whole metagenome shotgun (WMS) sequencing provides more precise microbial community characterizations. Most widely used protocols were developed to characterize microbiota of other habitats (i.e., gastrointestinal) and have not been systematically compared for their utility in skin microbiome surveys. Here we establish a resource for the cutaneous research community to guide experimental design in characterizing skin microbiota. We compare two widely sequenced regions of the 16S rRNA gene to WMS sequencing for recapitulating skin microbiome community composition, diversity, and genetic functional enrichment. We show that WMS sequencing most accurately recapitulates microbial communities, but sequencing of hypervariable regions 1-3 of the 16S rRNA gene provides highly similar results. Sequencing of hypervariable region 4 poorly captures skin commensal microbiota, especially Propionibacterium. WMS sequencing, which is resource and cost intensive, provides evidence of a community's functional potential; however, metagenome predictions based on 16S rRNA sequence tags closely approximate WMS genetic functional profiles. This study highlights the importance of experimental design for downstream results in skin microbiome surveys.


Assuntos
Bactérias/genética , Metagenômica/métodos , Microbiota/genética , Análise de Sequência de DNA/métodos , Pele/microbiologia , Humanos , Controle de Qualidade , RNA Mensageiro/genética , Projetos de Pesquisa , Staphylococcus/genética , Inquéritos e Questionários , Técnicas de Cultura de Tecidos
4.
mBio ; 6(5): e01578-15, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26489866

RESUMO

UNLABELLED: Viruses make up a major component of the human microbiota but are poorly understood in the skin, our primary barrier to the external environment. Viral communities have the potential to modulate states of cutaneous health and disease. Bacteriophages are known to influence the structure and function of microbial communities through predation and genetic exchange. Human viruses are associated with skin cancers and a multitude of cutaneous manifestations. Despite these important roles, little is known regarding the human skin virome and its interactions with the host microbiome. Here we evaluated the human cutaneous double-stranded DNA virome by metagenomic sequencing of DNA from purified virus-like particles (VLPs). In parallel, we employed metagenomic sequencing of the total skin microbiome to assess covariation and infer interactions with the virome. Samples were collected from 16 subjects at eight body sites over 1 month. In addition to the microenviroment, which is known to partition the bacterial and fungal microbiota, natural skin occlusion was strongly associated with skin virome community composition. Viral contigs were enriched for genes indicative of a temperate phage replication style and also maintained genes encoding potential antibiotic resistance and virulence factors. CRISPR spacers identified in the bacterial DNA sequences provided a record of phage predation and suggest a mechanism to explain spatial partitioning of skin phage communities. Finally, we modeled the structure of bacterial and phage communities together to reveal a complex microbial environment with a Corynebacterium hub. These results reveal the previously underappreciated diversity, encoded functions, and viral-microbial dynamic unique to the human skin virome. IMPORTANCE: To date, most cutaneous microbiome studies have focused on bacterial and fungal communities. Skin viral communities and their relationships with their hosts remain poorly understood despite their potential to modulate states of cutaneous health and disease. Previous studies employing whole-metagenome sequencing without purification for virus-like particles (VLPs) have provided some insight into the viral component of the skin microbiome but have not completely characterized these communities or analyzed interactions with the host microbiome. Here we present an optimized virus purification technique and corresponding analysis tools for gaining novel insights into the skin virome, including viral "dark matter," and its potential interactions with the host microbiome. The work presented here establishes a baseline of the healthy human skin virome and is a necessary foundation for future studies examining viral perturbations in skin health and disease.


Assuntos
Bacteriófagos/classificação , Vírus de DNA/classificação , DNA Viral/genética , DNA/genética , Variação Genética , Microbiota , Pele/virologia , Bactérias/classificação , Bactérias/genética , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Biologia Computacional , Vírus de DNA/genética , Vírus de DNA/isolamento & purificação , Humanos , Metagenômica , Análise de Sequência de DNA , Análise Espaço-Temporal
5.
Cell Mol Life Sci ; 72(8): 1499-515, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25548803

RESUMO

The skin is colonized by an assemblage of microorganisms which, for the most part, peacefully coexist with their hosts. In some cases, these communities also provide vital functions to cutaneous health through the modulation of host factors. Recent studies have illuminated the role of anatomical skin site, gender, age, and the immune system in shaping the cutaneous ecosystem. Alterations to microbial communities have also been associated with, and likely contribute to, a number of cutaneous disorders. This review focuses on the host factors that shape and maintain skin microbial communities, and the reciprocal role of microbes in modulating skin immunity. A greater understanding of these interactions is critical to elucidating the forces that shape cutaneous populations and their contributions to skin homeostasis. This knowledge can also inform the tendency of perturbations to predispose and/or bring about certain skin disorders.


Assuntos
Microbiota , Pele/microbiologia , Fatores Etários , Linfócitos T CD8-Positivos/imunologia , Humanos , Sistema Imunitário , Fatores Sexuais , Pele/metabolismo , Pele/patologia , Dermatopatias/imunologia , Dermatopatias/microbiologia , Dermatopatias/patologia
6.
J Virol ; 86(21): 11434-40, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22896617

RESUMO

A global HIV-1 vaccine will likely need to induce immune responses against conserved HIV-1 regions to contend with the profound genetic diversity of HIV-1. Here we evaluated the capacity of immunogens consisting of only highly conserved HIV-1 sequences that are aimed at focusing cellular immune responses on these potentially critical regions. We assessed in rhesus monkeys the breadth and magnitude of T lymphocyte responses elicited by adenovirus vectors expressing either full-length HIV-1 Gag/Pol/Env immunogens or concatenated immunogens consisting of only highly conserved HIV-1 sequences. Surprisingly, we found that the full-length immunogens induced comparable breadth (P = 1.0) and greater magnitude (P = 0.01) of CD8(+) T lymphocyte responses against conserved HIV-1 regions compared with the conserved-region-only immunogens. Moreover, the full-length immunogens induced a 5-fold increased total breadth of HIV-1-specific T lymphocyte responses compared with the conserved-region-only immunogens (P = 0.007). These results suggest that full-length HIV-1 immunogens elicit a substantially increased magnitude and breadth of cellular immune responses compared with conserved-region-only HIV-1 immunogens, including greater magnitude and comparable breadth of responses against conserved sequences.


Assuntos
Vacinas contra a AIDS/administração & dosagem , Vacinas contra a AIDS/imunologia , Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/imunologia , HIV-1/imunologia , Vacinas contra a AIDS/genética , Adenoviridae/genética , Animais , Portadores de Fármacos , Vetores Genéticos , Macaca mulatta , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene pol do Vírus da Imunodeficiência Humana/genética , Produtos do Gene pol do Vírus da Imunodeficiência Humana/imunologia
7.
Nature ; 482(7383): 89-93, 2012 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-22217938

RESUMO

Preclinical studies of human immunodeficiency virus type 1 (HIV-1) vaccine candidates have typically shown post-infection virological control, but protection against acquisition of infection has previously only been reported against neutralization-sensitive virus challenges. Here we demonstrate vaccine protection against acquisition of fully heterologous, neutralization-resistant simian immunodeficiency virus (SIV) challenges in rhesus monkeys. Adenovirus/poxvirus and adenovirus/adenovirus-vector-based vaccines expressing SIV(SME543) Gag, Pol and Env antigens resulted in an 80% or greater reduction in the per-exposure probability of infection against repetitive, intrarectal SIV(MAC251) challenges in rhesus monkeys. Protection against acquisition of infection showed distinct immunological correlates compared with post-infection virological control and required the inclusion of Env in the vaccine regimen. These data demonstrate the proof-of-concept that optimized HIV-1 vaccine candidates can block acquisition of stringent, heterologous, neutralization-resistant virus challenges in rhesus monkeys.


Assuntos
Anticorpos Neutralizantes/imunologia , Macaca mulatta/imunologia , Vacinas contra a SAIDS/imunologia , Vírus da Imunodeficiência Símia/imunologia , Vacinas contra a AIDS/imunologia , Adenoviridae/genética , Adenoviridae/imunologia , Animais , Ensaio de Imunoadsorção Enzimática , Feminino , HIV-1/imunologia , Masculino , Testes de Neutralização , Vacinas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...