Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Rev Neurobiol ; 85: 207-19, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19607972

RESUMO

Morphine-3-glucuronide (M3G), a main metabolite of morphine, has been proposed as a responsible factor when patients present with the neuroexcitatory side effects (allodynia, hyperalgesia, and myoclonus) observed following systemic administration of large doses of morphine. Indeed, both high-dose morphine (60 nmol/5 microl) and M3G (3 nmol/5 microl) elicit allodynia when administered intrathecally (i.t.) into mice. The allodynic behaviors are not opioid receptor mediated. This chapter reviews the potential mechanism of spinally mediated allodynia evoked by i.t. injection of M3G in mice. We discuss a possible presynaptic release of nociceptive neurotransmitters/neuromodulators such as substance P, glutamate, and dynorphin in the primary afferent fibers following i.t. M3G. It is possible to speculate that i.t. M3G injection could activate indirectly both NK(1) receptor and glutamate receptors that lead to the release of nitric oxide (NO) in the dorsal spinal cord. The NO plays an important role in M3G-induced allodynia. The phosphorylation of extracellular signal-regulated protein kinase (ERK) in the dorsal spinal cord evoked via NO/cGMP/PKG pathway contributes to i.t. M3G-induced allodynia. Furthermore, the increased release of NO observed after i.t. injection of M3G activates astrocytes and induces the release of the proinflammatory cytokine, interleukin-1beta. Taken together, these findings suggest that M3G may induce allodynia via activation of NO-ERK pathway, while maintenance of the allodynic response may be triggered by NO-activated astrocytes in the dorsal spinal cord. The demonstration of the cellular mechanisms of neuronal-glial interaction underlying M3G-induced allodynia provides a fruitful strategy for improved pain management with high doses of morphine.


Assuntos
Derivados da Morfina/toxicidade , Dor/induzido quimicamente , Dor/fisiopatologia , Medula Espinal/metabolismo , Animais , Astrócitos/fisiologia , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/biossíntese , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Ácido Glutâmico/metabolismo , Injeções Espinhais , Camundongos , Derivados da Morfina/administração & dosagem , Óxido Nítrico/metabolismo , Substância P/metabolismo
2.
Peptides ; 30(9): 1689-96, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19520130

RESUMO

The present study sought to examine the mechanism of substance P to modulate the antinociceptive action of intrathecal (i.t.) morphine in paw-licking/biting response evoked by subcutaneous injection of capsaicin into the plantar surface of the hindpaw in mice. The i.t. injection of morphine inhibited capsaicin-induced licking/biting response in a dose-dependent manner. Substance P (25 and 50 pmol) injected i.t. alone did not alter capsaicin-induced nociception, whereas substance P at a higher dose of 100 pmol significantly reduced the capsaicin response. Western blots showed the constitutive expression of endopeptidase-24.11 in the dorsal and ventral parts of lumbar spinal cord of mice. The N-terminal fragment of substance P (1-7), which is known as a major product of substance P by endopeptidase-24.11, was more effective than substance P on capsaicin-induced nociception. Combination treatment with substance P (50 pmol) and morphine at a subthreshold dose enhanced the antinociceptive effect of morphine. The enhanced effect of the combination of substance P with morphine was reduced significantly by co-administration of phosphoramidon, an inhibitor of endopeptidase-24.11. Administration of D-isomer of substance P (1-7), [D-Pro(2), D-Phe(7)]substance P (1-7), an inhibitor of [(3)H] substance P (1-7) binding, or antisera against substance P (1-7) reversed the enhanced antinociceptive effect by co-administration of substance P and morphine. Taken together these data suggest that morphine-induced antinociception may be enhanced through substance P (1-7) formed by the enzymatic degradation of i.t. injected substance P in the spinal cord.


Assuntos
Morfina/farmacologia , Medição da Dor/efeitos dos fármacos , Dor/induzido quimicamente , Fragmentos de Peptídeos/metabolismo , Substância P/farmacologia , Animais , Anticorpos/imunologia , Anticorpos/farmacologia , Capsaicina/farmacologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Glicopeptídeos/farmacologia , Injeções Espinhais , Masculino , Camundongos , Camundongos Endogâmicos , Morfina/administração & dosagem , Neprilisina/antagonistas & inibidores , Neprilisina/metabolismo , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/farmacologia , Inibidores de Proteases/farmacologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Substância P/administração & dosagem , Substância P/análogos & derivados , Substância P/antagonistas & inibidores , Substância P/imunologia , Substância P/metabolismo
3.
Neuropharmacology ; 52(5): 1237-43, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17353023

RESUMO

Intrathecal (i.t.) administration of morphine at a high dose of 60nmol into the spinal lumbar space in mice produces a severe hindlimb scratching followed by biting and licking. Nitric oxide (NO) is thought to play an important role in signal transduction pathways that enhance nociceptive transmission in the spinal cord. The present study was designed to determine whether high-dose i.t. morphine could influence the activation of the extracellular signal-regulated kinase (ERK), a mitogen-activated protein (MAP) kinase in neuronal nitric oxide synthase (nNOS) and inducible NOS (iNOS) activation. Both 7-NI and TRIM, selective inhibitors of nNOS, resulted in a dose-dependent inhibition of high-dose i.t. morphine-induced behavior. The selective iNOS inhibitor W1400 in relatively large doses inhibited in a non dose-dependent manner. The i.t. injection of morphine evoked a definite activation of ERK in the lumbar dorsal spinal cord. Behavioral experiments showed that U0126 (0.5-2.5nmol), a MAP kinase-ERK inhibitor, dose-dependently attenuated the behavioral response to i.t. morphine. In mice treated with high-dose morphine, 7-NI was very effective in blocking ERK activation, whereas W1400 had no effect. Taken together, these results suggest that the behavioral response to high-dose i.t. morphine may be triggered by the nNOS-ERK pathway in the dorsal spinal cord.


Assuntos
Analgésicos Opioides/farmacologia , Comportamento Animal/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Morfina/farmacologia , Óxido Nítrico Sintase/metabolismo , Nociceptores/efeitos dos fármacos , Dor/psicologia , Amidinas/farmacologia , Analgésicos Opioides/administração & dosagem , Animais , Benzilaminas/farmacologia , Western Blotting , Butadienos/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Indazóis/farmacologia , Injeções Espinhais , Masculino , Camundongos , Morfina/administração & dosagem , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Nitrilas/farmacologia , Transdução de Sinais/efeitos dos fármacos
4.
Peptides ; 26(12): 2505-12, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16006010

RESUMO

Injection of capsaicin into the hindpaw has been employed as a model of chemogenic nociception in mice. Intraplantar injection of nociceptin (30-240 pmol) produced a significant and dose-dependent antinociceptive activity in the capsaicin test. The nociceptin N-terminal fragments, (1-11) and (1-13), were also active with a potency higher than nociceptin and comparable to nociceptin, respectively. Intraplantar injection of the nociceptin (1-7) fragment had no effect on capsaicin-induced nociception. Antinociception induced by nociceptin or nociceptin (1-13) was reversed significantly by intraplantar co-injection of [Nphe1]nociceptin (1-13)NH2, an orphan opioid receptor-like 1 (ORL1) receptor antagonist, whereas local injection of the antagonist did not interfere with the action of nociceptin (1-11). Nociceptin (1-11) was approximately 2.0-fold more potent than naturally occurring peptide nociceptin, and 10-fold more active than intraplantar morphine. Nociceptive licking/biting response to intraplantar injection of capsaicin was desensitized by repeated injections of capsaicin at the interval of 15 min. Desensitization induced by capsaicin was attenuated significantly by co-injection of nociceptin at much lower doses than antinociceptive ED50 for nociceptin. Capsaicin desensitization was also decreased by co-injection of nociceptin (1-11) and (1-13) to a similar extent. The present results indicate that not only nociceptin but also the N-terminal fragment (1-13) possesses a local peripheral antinociceptive action, which may be mediated by peripheral ORL1 receptors. In addition, the difference of the effective doses suggests that the antinociceptive action and inhibition of capsaicin-induced desenitization by nociceptin, nociceptin (1-11) and (1-13), may involve distinct mechanisms at the level of the peripheral nerve terminal.


Assuntos
Capsaicina/administração & dosagem , Peptídeos Opioides/administração & dosagem , Peptídeos/administração & dosagem , Vasodilatadores/administração & dosagem , Animais , Relação Dose-Resposta a Droga , Masculino , Camundongos , Antagonistas de Entorpecentes , Dor/induzido quimicamente , Dor/tratamento farmacológico , Medição da Dor/métodos , Receptores Opioides , Receptor de Nociceptina , Nociceptina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...