Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 686: 1272-1281, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31412523

RESUMO

Visualisation of the groundwater flow and contaminant transport can play a significant role for a better understanding of contaminant fate, which helps decision-makers and contaminated site planners to choose and implement the best remediation strategies. In this paper, a microfluidic chip coated with nanoclay was developed to mimic soil behaviour. Scanning electron microscopy (SEM) images and Fourier-transform infrared spectroscopy (FTIR) analysis confirmed that all the features and surfaces are coated with nanoclay. The change of contact angle for the native polydimethylsiloxane (PDMS) from 151°â€¯±â€¯4° to 73°â€¯±â€¯6° for modified ones is indicative of a considerable shift to hydrophilic behaviour. Moreover, the transport process in the developed chip was simulated utilising the Theory of Porous Media (TPM) and computational fluid dynamic (CFD) approaches. Although the results of both numerical approaches are in good agreement with experiments, the Root Mean Square Error (RMSE) of the predicted contaminant concentration by TPM at two observation points is less than that of CFD.

2.
Phys Rev E ; 97(6-1): 063104, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30011490

RESUMO

This paper reports the experimental results of a water droplet spreading on a glass substrate submerged in an oil phase. The radius of the wetted area grows exponentially over time forming two distinct regimes. The early time dynamics of wetting is characterized with the time exponent of 1, referred to as the viscous regime, which is ultimately transitioned to the Tanner's regime with the time exponent of 0.1. It is revealed that an increase in the ambient phase viscosity over three decades considerably slows down the rate of three-phase contact line movement. A scaling law is developed where the three-phase contact line velocity is a function of both spreading radius and mean viscosity, close to the geometric mean of the droplet and ambient fluids' viscosities. Using the proposed scaling and mean viscosity, all plots of spreading radius for different viscosity ratios collapse to a master curve. Furthermore, several cases with multiple rupture and spreading points, i.e., wetting in a nonideal system, are considered. The growth of an equivalent wetting radius in a multiple point spreading system is predicted by the developed scaling law.

3.
Lab Chip ; 18(2): 285-295, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29199291

RESUMO

A key constraint in the application of microfluidic technology to subsurface flow and transport processes is the surface discrepancy between microchips and the actual rocks/soils. This research employs a novel layer-by-layer (LbL) assembly technology to produce rock-forming mineral coatings on microchip surfaces. The outcome of the work is a series of 'surface-mimetic micro-reservoirs (SMMR)' that represent multi-scales and multi-types of natural rocks/soils. For demonstration, the clay pores of sandstones and mudrocks are reconstructed by representatively coating montmorillonite and kaolinite in polydimethylsiloxane (PDMS) microchips in a wide range of channel sizes (width of 10-250 µm, depth of 40-100 µm) and on glass substrates. The morphological and structural properties of mineral coatings are characterized using a scanning electron microscope (SEM), optical microscope and profilometer. The coating stability is tested by dynamic flooding experiments. The surface wettability is characterized by measuring mineral oil-water contact angles. The results demonstrate the formation of nano- to micro-scale, fully-covered and stable mineral surfaces with varying wetting properties. There is an opportunity to use this work in the development of microfluidic technology-based applications for subsurface energy and environmental research.

4.
Sci Rep ; 6: 32418, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27581365

RESUMO

This study focused on the effects of simulated microgravity (s-µg) on mechanical properties, major cytoskeleton biopolymers, and morphology of endothelial cells (ECs). The structural and functional integrity of ECs are vital to regulate vascular homeostasis and prevent atherosclerosis. Furthermore, these highly gravity sensitive cells play a key role in pathogenesis of many diseases. In this research, impacts of s-µg on mechanical behavior of human umbilical vein endothelial cells were investigated by utilizing a three-dimensional random positioning machine (3D-RPM). Results revealed a considerable drop in cell stiffness and viscosity after 24 hrs of being subjected to weightlessness. Cortical rigidity experienced relatively immediate and significant decline comparing to the stiffness of whole cell body. The cells became rounded in morphology while western blot analysis showed reduction of the main cytoskeletal components. Moreover, fluorescence staining confirmed disorganization of both actin filaments and microtubules (MTs). The results were compared statistically among test and control groups and it was concluded that s-µg led to a significant alteration in mechanical behavior of ECs due to remodeling of cell cytoskeleton.


Assuntos
Citoesqueleto de Actina/ultraestrutura , Células Endoteliais da Veia Umbilical Humana/ultraestrutura , Microtúbulos/ultraestrutura , Simulação de Ausência de Peso/instrumentação , Citoesqueleto de Actina/metabolismo , Fenômenos Biomecânicos , Forma Celular , Elasticidade , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Microtúbulos/metabolismo , Viscosidade , Simulação de Ausência de Peso/métodos
5.
Lab Chip ; 15(12): 2559-75, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-25994317

RESUMO

In recent years, the need for measurement and detection of samples in situ or with very small volume and low concentration (low and sub-parts per billion) is a cause for miniaturizing systems via microelectromechanical system (MEMS) technology. Gas chromatography (GC) is a common technique that is widely used for separating and measuring semi-volatile and volatile compounds. Conventional GCs are bulky and cannot be used for in situ analysis, hence in the past decades many studies have been reported with the aim of designing and developing chip-based GC. The focus of this review is to follow and investigate the development and the achievements in the field of chip-based GC and its components from the beginning up to the present.


Assuntos
Cromatografia Gasosa , Sistemas Microeletromecânicos , Técnicas Analíticas Microfluídicas
6.
Lab Chip ; 14(17): 3262-74, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-24984591

RESUMO

Conventional methods of plant cell analysis rely on growing plant cells in soil pots or agarose plates, followed by screening the plant phenotypes in traditional greenhouses and growth chambers. These methods are usually costly, need a large number of experiments, suffer from low spatial resolution and disorderly growth behavior of plant cells, with lack of ability to locally and accurately manipulate the plant cells. Microfluidic platforms take advantage of miniaturization for handling small volume of liquids and providing a closed environment, with the purpose of in vitro single cell analysis and characterizing cell response to external cues. These platforms have shown their ability for high-throughput cellular analysis with increased accuracy of experiments, reduced cost and experimental times, versatility in design, ability for large-scale and combinatorial screening, and integration with other miniaturized sensors. Despite extensive research on animal cells within microfluidic environments for high-throughput sorting, manipulation and phenotyping studies, the application of microfluidics for plant cells studies has not been accomplished yet. Novel devices such as RootChip, RootArray, TipChip, and PlantChip developed for plant cells analysis, with high spatial resolution on a micrometer scale mimicking the internal microenvironment of plant cells, offering preliminary results on the capability of microfluidics to conquer the constraints of conventional methods. These devices have been used to study different aspects of plant cell biology such as gene expression, cell biomechanics, cellular mechanism of growth, cell division, and cells fusion. This review emphasizes the advantages of current microfluidic systems for plant science studies, and discusses future prospects of microfluidic platforms for characterizing plant cells response to diverse external cues.


Assuntos
Técnicas Analíticas Microfluídicas , Células Vegetais , Fenômenos Biomecânicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA