Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 14(11)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36365193

RESUMO

Favipiravir displays a rapid viral clearance, a high recovery rate and broad therapeutic safety; however, its oral administration was associated with systemic side effects in susceptible patients. Considering that the pulmonary route could provide a high drug concentration, and a safer application with less absorption into systemic circulation, it was aimed to elucidate whether favipiravir delivered via soft-mist inhaler has any deleterious effects on lung, liver and kidney tissues of healthy rats. Wistar albino rats of both sexes (n = 72) were placed in restrainers, and were given either saline or favipiravir (1, 2.5, 5 or 10 mg/kg in 1 mL saline) by inhalation within 2 min for 5 consecutive days. On the 6th day, electrocardiographic recording was obtained, and cardiac blood and lung tissues were collected. Favipiravir did not alter cardiac rhythm, blood cell counts, serum levels of alanine transaminase, aspartate transaminase, blood urea nitrogen, creatinine, urea or uric acid, and did not cause any significant changes in the pulmonary malondialdehyde, myeloperoxidase activity or antioxidant glutathione levels. Our data revealed that pulmonary use of favipiravir via soft-mist inhaler enables a high local concentration compared to plasma without oxidative lung injury or cardiac or hepatorenal dysfunction.

2.
J Pharm Sci ; 111(10): 2652-2661, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35691607

RESUMO

Coronavirus Disease 2019 (COVID-19) pandemic has been on the agenda of humanity for more than 2 years. In the meantime, the pandemic has caused economic shutdowns, halt of daily lives and global mobility, overcrowding of the healthcare systems, panic, and worse, more than 6 million deaths. Today, there is still no specific therapy for COVID-19. Research focuses on repurposing of antiviral drugs that are licensed or currently in the research phase, with a known systemic safety profile. However, local safety profile should also be evaluated depending on the new indication, administration route and dosage form. Additionally, various vaccines have been developed. But the causative virus, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), has undergone multiple variations, too. The premise that vaccines may suffice to eradicate new and all variants is unreliable, as they are based on earlier versions of the virus. Therefore, a specific medication therapy for COVID-19 is crucial and needed in order to prevent severe complications of the disease. Even though there is no specific drug that inhibits the replication of the disease-causing virus, among the current treatment options, systemic antivirals are the most medically appropriate. As SARS-CoV-2 directly targets the lungs and initiates lung damage, treating COVID-19 with inhalants can offer many advantages over the enteral/parenteral administration. Inhaled drug delivery provides higher drug concentration, specifically in the pulmonary system. This enables the reduction of systemic side effects and produces a rapid clinical response. In this article, the most frequently (systemically) used antiviral compounds are reviewed including Remdesivir, Favipiravir, Molnupiravir, Lopinavir-Ritonavir, Umifenovir, Chloroquine, Hydroxychloroquine and Heparin. A comprehensive literature search was conducted to provide insight into the potential inhaled use of these antiviral drugs and the current studies on inhalation therapy for COVID-19 was presented. A brief evaluation was also made on the use of inhaler devices in the treatment of COVID-19. Inhaled antivirals paired with suitable inhaler devices should be considered for COVID-19 treatment options.


Assuntos
Tratamento Farmacológico da COVID-19 , Antivirais , Cloroquina , Heparina , Humanos , Hidroxicloroquina/uso terapêutico , Lopinavir , Ritonavir , SARS-CoV-2
3.
Eur J Pharm Sci ; 165: 105926, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34242751

RESUMO

The circadian timing system controls many biological functions in mammals including drug metabolism and detoxification, cell cycle events, and thus may affect pharmacokinetics, target organ toxicity and efficacy of medicines. Selective mTOR (mammalian target of rapamycin) inhibitor everolimus is an immunosuppressant and anticancer drug that is effective against several cancers. The aim of this study was to investigate dosing-time dependent testicular toxicity of subacute everolimus administration in mice. C57BL/6 J male mice were synchronized with Light-Dark (12h:12 h) cycle, with Light-onset at Zeitgeber Time (ZT)-0. Everolimus (5 mg/kg/day) was administered orally to mice at ZT1rest-span or ZT13activity-span for 4 weeks. Body weight loss, clinical signs, changes in testicular weights, testis histology, spermatogenesis and proliferative activity of germinal epithelium of seminiferous tubules were examined. Steady-state everolimus concentrations in testes were determined with validated HPLC method. Everolimus toxicity was less severe following dosing at ZT13 compared to ZT1, as shown with least body weight loss (p<0.001), least reductions in testes weights (p<0.001) and least histopathological findings. Everolimus-induced histological changes on testes included vacuolisation and atrophy of germinal epithelium, and loss of germinal cell attachment. The severity of everolimus-induced histological toxicity on testes was significantly more evident in mice treated at ZT1 than ZT13 (p<0.001). Spermatogenic cell population significantly decreased when everolimus administered at ZT1 compared to ZT13 (p<0.001). Proliferative activity of germinal epithelium was significantly decreased due to treatment at ZT1 compared to ZT13 (p<0.001). Everolimus concentrations in testes indicated a pronounced circadian variation, which was greater in mice treated at ZT1 compared to ZT13 (p<0.05). Our study revealed dosing-time dependent testicular toxicity of everolimus in mice, which was greater in severity when everolimus administered at early rest-span (daytime-ZT1) than early activity-span (nighttime-ZT13). These findings support the concept of everolimus chronotherapy for minimizing reproductive toxicity and increasing the tolerability of everolimus, as a clinical advantage.


Assuntos
Antineoplásicos , Everolimo , Animais , Antineoplásicos/farmacologia , Ritmo Circadiano , Everolimo/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Testículo
4.
Food Chem Toxicol ; 153: 112264, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33992720

RESUMO

This study aimed to investigate the molecular effects of the common natural sugar glucose and artificial sweetener aspartame on cancer stem cell (CSC) population and cancer aggressiveness of PANC-1 human pancreas adenocarcinoma cells. According to our findings while aspartame exposure significantly increased the CSC population, high glucose had no effect on it. The epithelial-mesenchymal transition marker N-cadherin increased only in the aspartame group. The findings indicate that a high level of glucose exposure does not effect the invasion and migration of PANC-1 cells, while aspartame increases both of these aggressiveness criteria. The findings also suggest that a high concentration of glucose maintains CSC population through induction of nuclear Oct3/4 and differentiation to parental cells via increasing cytoplasmic c-myc. Aspartame exposure to PANC-1 cells activated AKT and deactivated GSK3ß by increasing levels of ROS and cytoplasmic Ca+2, respectively, through T1R2/T1R3 stimulation. Then p-GSK3ß(Ser9) boosted the CSC population by increasing pluripotency factors Oct3/4 and c-myc via NICD, GLI1 and p21. In the aspartame group, T1R1 silencing further increased the CSC population but decreased cell viability and suppressed the p21, NICD and GLI activation. The presence and amount of T1R subunits in the membrane fraction of PANC-1 cells are demonstrated for the first time in this study, as is the regulatory effect of T1R1's on CSC population. In conclusion, the present study demonstrated that long-term aspartame exposure increases CSC population and tumor cell aggressiveness through p21, NICD, GLI1. Moreover, while aspartame had no tumorigenic effect, it could potentially advance an existing tumor.


Assuntos
Adenocarcinoma/metabolismo , Aspartame/farmacologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias Pancreáticas/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glucose/farmacologia , Humanos , Células-Tronco Neoplásicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
5.
J Cell Physiol ; 236(5): 3881-3895, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33107061

RESUMO

The goal of this study was to research long-term saturated fatty acid overexposure that can induce differentiation of pancreatic duct cells into adipocytes and also into ß-cells. The important findings can be summarized as follows: (i) adipogenesis and early stage ß-cell differentiation were stimulated in duct cells under lipotoxicity and glucolipotoxicity conditions, (ii) miR-375 expression was upregulated while its target Erk1 was downregulated and miR-375 inhibitor upregulated Erk1 while expression of adipogenesis markers was downregulated in duct cells under both conditions, (iii) apoptosis was induced in ß and duct cells under both conditions, (iv) lipotoxicity induced proliferation of co-cultured ß-cells. These findings suggest that long-term saturated fatty acid overexposure may cause intrapancreatic fat accumulation by inducing differentiation of duct cells into adipocytes and it may contributes to ß-cell compensation by stimulating the early stage of ß-cell differentiation in duct cells. In addition, miR-375 may have the potential to be a new target in the treatment of Type 2 diabetes, and NAFPD due to its role in the adipogenesis of duct cells.


Assuntos
Adipogenia/genética , MicroRNAs/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Ácido Palmítico/farmacologia , Ductos Pancreáticos/citologia , Adipogenia/efeitos dos fármacos , Animais , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Glucose/toxicidade , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Lipídeos/toxicidade , Masculino , MicroRNAs/genética , Modelos Biológicos , Necrose , Ratos Wistar , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...