Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Technol ; : 1-9, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37482803

RESUMO

Environmental release of wastewater that contains cytostatic drugs can cause genotoxic impact, since these drugs act directly on the genetic material of aquatic organisms. Thus, the aim of this study was to evaluate the removal of the cytostatic drugs cytarabine (CTR) and methotrexate (MTX) using different physico-chemical methods individually (i.e. US, O3, H2O2 and UV) and combined (i.e. O3/US, US/H2O2, O3/H2O2 and O3/US/H2O2) under different pH conditions (4, 7 and 10). In the degradation tests, the efficiency of the methods applied was found to be dependent on the pH of the solution, with the degradation of CTR being better at pH 4 and MTX at pH 7 and pH 10. The US, H2O2 and US + H2O2 methods were the least efficient in degrading CTR and MTX under the pH conditions tested. The highest MTX degradation rate after 16 min of treatment at pH 7 was achieved by the O3 + H2O2 method (97.05% - C/C0 = 0.0295). For CTR, the highest degradation rate after 16 min of treatment was achieved by the O3 process (99.70% - C/C0 = 0.0030) at pH 4. In conclusion, most of the treatment methods tested for the degradation of CTR and MTX are effective. Notably, ozonolysis is an efficient process applied alone. Also, in combination with other methods (US + O3, O3 + H2O2 and O3 + H2O2 + US) it increases the degradation performance, showing a rapid removal rate of 70-94% in less than 4 min of treatment.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36281981

RESUMO

The goal of this study was to assess the efficiency of antibiotic degradation applying different chemical treatment methods and their combinations. Thus, improvement in the efficiency of these methods when combined was quantified. The methods tested to degrade/mineralize the antibiotics amoxicillin (AMX) and ciprofloxacin (CIP) under different pH conditions (4, 7 and 10) were ultra-violet irradiation (UV254 nm), ultrasound (US), hydrogen peroxide (H2O2) and ozone (O3) alone and in combination. The results showed that individual methods were only partially efficient in the degradation/mineralization of antibiotics, except for ozonation at alkaline pH. In the combined methods, the best performance was obtained with US/UV/H2O2/O3 (pH 10, 20-min treatment), where the degradation rates for the antibiotics were 99.8% for CIP and 99.9% for AMX. For the mineralization efficiency the values obtained were 71.3% for CIP and 79.2% for AMX. The results of this study could contribute to the development and improvement of wastewater treatment aimed at avoiding the presence of residual antibiotics in the environment.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Peróxido de Hidrogênio/química , Poluentes Químicos da Água/análise , Oxirredução , Amoxicilina , Ciprofloxacina/química , Antibacterianos/química
3.
J Environ Sci Health B ; 57(9): 756-764, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36039562

RESUMO

The composting process is an option for acceptable environmental management of cattle slaughterhouse by-products. The goals of this article were (i) to make a low-cost inoculum using popular supermarket ingredients and microorganisms that are already present in the composting environment, and (ii) to compare the efficiency of the composting process with and without the application of formulated inoculum. Initially, a consortium of microorganisms already present in the composting environment (Saccharomyces cerevisiae, Bacillus subtilis, and Rhodopseudomonas palustris) was prepared in a low-cost culture medium for use as an inoculum for the composting process. The composting process with the addition of the inoculum was more efficient than the composting process without the inoculum, in terms of both the chemical composition and the process efficiency, but mainly in relation to the time required for composting, with the mean times for decay of 50% of the windrows' temperature (taking in to account the difference between internal and external windrow temperatures) being 96 days without inoculum and 65 days with inoculum. Thus, inoculum made with low-cost supermarket products reduced the composting time and yielded compost of better quality.


Assuntos
Compostagem , Matadouros , Animais , Bovinos , Solo/química , Temperatura
4.
Environ Technol ; : 1-9, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35802062

RESUMO

This article seeks to characterize the bacterial profile of pediatric hospital wastewater samples collected at the outlet of a wastewater treatment plant, and to estimate their relative susceptibility to antimicrobial agents. A total of 64 strains were isolated in the wastewater samples, of which 49 were identified as belonging to different families: Enterobacteriaceae (e.g. Escherichia coli, Klebsiella sp., Citrobacter sp.) comprised 57.2% of the identified bacteria, non-Enterobacteriaceae (e.g. Aeromonas sp., Pseudomonas sp.) comprised 30.6%, and Streptococcaceae (e.g. Enterococcus sp.) comprised 12.2%. The tests of the susceptibility of the bacteria to the antimicrobial agents used in the hospital showed that 100% of the bacterial species found discharged in the hospital wastewater treatment system were resistant to one or more of the antimicrobial agents according to the criteria of the U.S. Clinical Laboratory Standards Institute/National Committee for Clinical Laboratory Standards. The antimicrobial agent tests showed that meropenem, norfloxacin, ciprofloxacin, levofloxacin, and cefepime were the most effective antimicrobials against bacteria of the Enterobacteriaceae family. For bacteria of the non-Enterobacteriaceae family, norfloxacin, ciprofloxacin, levofloxacin, and cefepime presented the most effective antimicrobial action, whereas for bacteria of the Streptococcaceae family, ampicillin, vancomycin, and gentamicin were the most effective antimicrobials. Hospital wastewater treatment plants could be considered as places of selection pressure for bacterial resistance because of the presence of antibiotic-resistant bacteria coming from sewers or created at the treatment plant.

5.
Artigo em Inglês | MEDLINE | ID: mdl-34338138

RESUMO

The use of advanced oxidative processes (AOPs) is an efficient alternative for the treatment of textile wastewaters. The aim of this study was to assess the dye removal efficiency of a Fenton-based degradation process followed by a polishing step using biochar prepared from rice husk. Six recalcitrant textile dyes - Reactive Red 195 (D1), Synolon Brown S2 (D2), Orange Remazol RGB (D3), Yellow Synozol K3 (D4), Reactive Orange (D5), and Reactive Black 5 (D6) - were treated with Fenton and photo-Fenton processes (with and without biochar polishing) under optimized conditions. The results showed a general efficiency ranking: photo-Fenton + biochar ≈ Fenton + biochar > photo-Fenton ≈ Fenton. The Fenton process was also efficient for the regeneration of the dye-saturated biochar. The photo-Fenton + biochar process achieved the following color removal percentages: D1 (98.8%), D2 (99.7%), D3 (98.9%), D4 (96.3%), D5 (94.2%) and D6 (94.8%). This process was applied to a real conventionally-treated textile wastewater and analysis showed a reduction in BOD (87.5% degradation), COD (62.5% degradation) and color (93.5% mean removal). These results reveal the possibility for the reuse of the treated water for non-potable industrial uses, for example, floor washing or the cleaning of machines and toilet areas.


Assuntos
Eliminação de Resíduos Líquidos , Poluentes Químicos da Água , Carvão Vegetal , Corantes , Peróxido de Hidrogênio , Oxirredução , Têxteis
6.
Environ Sci Pollut Res Int ; 28(13): 16532-16543, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33387324

RESUMO

The degradation efficiency of the Fenton reaction or ozonolysis (O3) to treat soil contaminated by crude petroleum was studied in association with the sonolysis process. To quantify oxidation efficiency, total organic carbon (TOC) and chemical oxygen demand (COD) were measured, while biochemical oxygen demand (BOD5) was measured to estimate biodegradation potential. TOC removal efficiency ranged from 9 to 52% to the Fenton reaction without sonolysis, and 18% and 78% with sonolysis for reagent concentrations of 1% H2O2-100 mM Fe2+ and 20% H2O2-1 mM Fe2+, respectively. For ozonolysis (after 10 and 60 min of treatment), the reduction in TOC ranged from 9 to 43% without sonolysis and 15 to 61% with sonolysis. The Fenton reaction without sonolysis increased the biodegradability in relation to the non-oxidized sample by 6% (1% H2O2-100 mM Fe2+) and 26% (20% H2O2-1 mM Fe2+), and with sonolysis the corresponding values were 13% and 42%, respectively. The biodegradation potential under ozonolysis without sonolysis increased from 0.18 (10 min of treatment) to 0.38 (30 min of treatment), and with sonolysis these values were 0.26 and 0.58, respectively. Optimization of the remediation processes is essential to determine sequential treatment order and efficiency.


Assuntos
Ozônio , Petróleo , Poluentes Químicos da Água , Peróxido de Hidrogênio , Ferro , Oxirredução , Solo , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...