Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 325(5941): 714-8, 2009 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-19661422

RESUMO

Flowering time is a complex trait that controls adaptation of plants to their local environment in the outcrossing species Zea mays (maize). We dissected variation for flowering time with a set of 5000 recombinant inbred lines (maize Nested Association Mapping population, NAM). Nearly a million plants were assayed in eight environments but showed no evidence for any single large-effect quantitative trait loci (QTLs). Instead, we identified evidence for numerous small-effect QTLs shared among families; however, allelic effects differ across founder lines. We identified no individual QTLs at which allelic effects are determined by geographic origin or large effects for epistasis or environmental interactions. Thus, a simple additive model accurately predicts flowering time for maize, in contrast to the genetic architecture observed in the selfing plant species rice and Arabidopsis.


Assuntos
Flores/genética , Locos de Características Quantitativas , Zea mays/genética , Alelos , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Epistasia Genética , Flores/crescimento & desenvolvimento , Frequência do Gene , Genes de Plantas , Variação Genética , Geografia , Endogamia , Fenótipo , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Recombinação Genética , Fatores de Tempo , Zea mays/crescimento & desenvolvimento , Zea mays/fisiologia
2.
BMC Bioinformatics ; 9: 154, 2008 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-18366684

RESUMO

BACKGROUND: With advances in DNA re-sequencing methods and Next-Generation parallel sequencing approaches, there has been a large increase in genomic efforts to define and analyze the sequence variability present among individuals within a species. For very polymorphic species such as maize, this has lead to a need for intuitive, user-friendly software that aids the biologist, often with naïve programming capability, in tracking, editing, displaying, and exporting multiple individual sequence alignments. To fill this need we have developed a novel DNA alignment editor. RESULTS: We have generated a nucleotide sequence alignment editor (DNAAlignEditor) that provides an intuitive, user-friendly interface for manual editing of multiple sequence alignments with functions for input, editing, and output of sequence alignments. The color-coding of nucleotide identity and the display of associated quality score aids in the manual alignment editing process. DNAAlignEditor works as a client/server tool having two main components: a relational database that collects the processed alignments and a user interface connected to database through universal data access connectivity drivers. DNAAlignEditor can be used either as a stand-alone application or as a network application with multiple users concurrently connected. CONCLUSION: We anticipate that this software will be of general interest to biologists and population genetics in editing DNA sequence alignments and analyzing natural sequence variation regardless of species, and will be particularly useful for manual alignment editing of sequences in species with high levels of polymorphism.


Assuntos
Algoritmos , Polimorfismo de Nucleotídeo Único/genética , Alinhamento de Sequência/métodos , Análise de Sequência de DNA/métodos , Software , Interface Usuário-Computador , Sequência de Bases , Dados de Sequência Molecular , Processamento de Texto/métodos
3.
PLoS Genet ; 3(7): e123, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17658954

RESUMO

Maize (Zea mays L.) is one of the most important cereal crops and a model for the study of genetics, evolution, and domestication. To better understand maize genome organization and to build a framework for genome sequencing, we constructed a sequence-ready fingerprinted contig-based physical map that covers 93.5% of the genome, of which 86.1% is aligned to the genetic map. The fingerprinted contig map contains 25,908 genic markers that enabled us to align nearly 73% of the anchored maize genome to the rice genome. The distribution pattern of expressed sequence tags correlates to that of recombination. In collinear regions, 1 kb in rice corresponds to an average of 3.2 kb in maize, yet maize has a 6-fold genome size expansion. This can be explained by the fact that most rice regions correspond to two regions in maize as a result of its recent polyploid origin. Inversions account for the majority of chromosome structural variations during subsequent maize diploidization. We also find clear evidence of ancient genome duplication predating the divergence of the progenitors of maize and rice. Reconstructing the paleoethnobotany of the maize genome indicates that the progenitors of modern maize contained ten chromosomes.


Assuntos
Evolução Molecular , Genoma de Planta , Zea mays/genética , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos/genética , Cromossomos de Plantas/genética , Impressões Digitais de DNA , DNA de Plantas/genética , Grão Comestível/genética , Duplicação Gênica , Rearranjo Gênico , Oryza/genética , Filogenia , Especificidade da Espécie
4.
BMC Genomics ; 8: 47, 2007 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-17291341

RESUMO

BACKGROUND: Molecular markers serve three important functions in physical map assembly. First, they provide anchor points to genetic maps facilitating functional genomic studies. Second, they reduce the overlap required for BAC contig assembly from 80 to 50 percent. Finally, they validate assemblies based solely on BAC fingerprints. We employed a six-dimensional BAC pooling strategy in combination with a high-throughput PCR-based screening method to anchor the maize genetic and physical maps. RESULTS: A total of 110,592 maize BAC clones (approximately 6x haploid genome equivalents) were pooled into six different matrices, each containing 48 pools of BAC DNA. The quality of the BAC DNA pools and their utility for identifying BACs containing target genomic sequences was tested using 254 PCR-based STS markers. Five types of PCR-based STS markers were screened to assess potential uses for the BAC pools. An average of 4.68 BAC clones were identified per marker analyzed. These results were integrated with BAC fingerprint data generated by the Arizona Genomics Institute (AGI) and the Arizona Genomics Computational Laboratory (AGCoL) to assemble the BAC contigs using the FingerPrinted Contigs (FPC) software and contribute to the construction and anchoring of the physical map. A total of 234 markers (92.5%) anchored BAC contigs to their genetic map positions. The results can be viewed on the integrated map of maize 12. CONCLUSION: This BAC pooling strategy is a rapid, cost effective method for genome assembly and anchoring. The requirement for six replicate positive amplifications makes this a robust method for use in large genomes with high amounts of repetitive DNA such as maize. This strategy can be used to physically map duplicate loci, provide order information for loci in a small genetic interval or with no genetic recombination, and loci with conflicting hybridization-based information.


Assuntos
Cromossomos Artificiais Bacterianos , Genoma de Planta , Reação em Cadeia da Polimerase/métodos , Sequências Repetitivas de Ácido Nucleico , Zea mays/genética , Primers do DNA , DNA de Plantas/genética , Marcadores Genéticos , Fatores de Transcrição/genética
5.
Plant Cell ; 17(11): 2859-72, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16227451

RESUMO

Maize (Zea mays subsp mays) was domesticated from teosinte (Z. mays subsp parviglumis) through a single domestication event in southern Mexico between 6000 and 9000 years ago. This domestication event resulted in the original maize landrace varieties, which were spread throughout the Americas by Native Americans and adapted to a wide range of environmental conditions. Starting with landraces, 20th century plant breeders selected inbred lines of maize for use in hybrid maize production. Both domestication and crop improvement involved selection of specific alleles at genes controlling key morphological and agronomic traits, resulting in reduced genetic diversity relative to unselected genes. Here, we sequenced 1095 maize genes from a sample of 14 inbred lines and chose 35 genes with zero sequence diversity as potential targets of selection. These 35 genes were then sequenced in a sample of diverse maize landraces and teosintes and tested for selection. Using two statistical tests, we identified eight candidate genes. Extended gene sequencing of these eight candidate loci confirmed that six were selected throughout the gene, and the remaining two exhibited evidence of selection in the 3' portion of each gene. The selected genes have functions consistent with agronomic selection for nutritional quality, maturity, and productivity. Our large-scale screen for artificial selection allows identification of genes of potential agronomic importance even when gene function and the phenotype of interest are unknown.


Assuntos
Agricultura/métodos , Mapeamento Cromossômico/métodos , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Seleção Genética , Zea mays/genética , Quimera/genética , Mapeamento Cromossômico/tendências , Testes Genéticos/métodos , Variação Genética/genética , Genótipo , Dados de Sequência Molecular , Fenótipo
6.
Plant Physiol ; 134(4): 1317-26, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15020742

RESUMO

Our goal is to construct a robust physical map for maize (Zea mays) comprehensively integrated with the genetic map. We have used a two-dimensional 24 x 24 overgo pooling strategy to anchor maize expressed sequence tagged (EST) unigenes to 165,888 bacterial artificial chromosomes (BACs) on high-density filters. A set of 70,716 public maize ESTs seeded derivation of 10,723 EST unigene assemblies. From these assemblies, 10,642 overgo sequences of 40 bp were applied as hybridization probes. BAC addresses were obtained for 9,371 overgo probes, representing an 88% success rate. More than 96% of the successful overgo probes identified two or more BACs, while 5% identified more than 50 BACs. The majority of BACs identified (79%) were hybridized with one or two overgos. A small number of BACs hybridized with eight or more overgos, suggesting that these BACs must be gene rich. Approximately 5,670 overgos identified BACs assembled within one contig, indicating that these probes are highly locus specific. A total of 1,795 megabases (Mb; 87%) of the total 2,050 Mb in BAC contigs were associated with one or more overgos, which are serving as sequence-tagged sites for single nucleotide polymorphism development. Overgo density ranged from less than one overgo per megabase to greater than 20 overgos per megabase. The majority of contigs (52%) hit by overgos contained three to nine overgos per megabase. Analysis of approximately 1,022 Mb of genetically anchored BAC contigs indicates that 9,003 of the total 13,900 overgo-contig sites are genetically anchored. Our results indicate overgos are a powerful approach for generating gene-specific hybridization probes that are facilitating the assembly of an integrated genetic and physical map for maize.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Mapeamento de Sequências Contíguas/métodos , Etiquetas de Sequências Expressas , Hibridização de Ácido Nucleico/métodos , Zea mays/genética , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único
8.
Plant Mol Biol ; 48(5-6): 463-81, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12004892

RESUMO

Microsatellite or simple sequence repeat (SSR) markers have wide applicability for genetic analysis in crop plant improvement strategies. The objectives of this project were to isolate, characterize, and map a comprehensive set of SSR markers for maize (Zea mays L.). We developed 1051 novel SSR markers for maize from microsatellite-enriched libraries and by identification of microsatellite-containing sequences in public and private databases. Three mapping populations were used to derive map positions for 978 of these markers. The main mapping population was the intermated B73 x Mo17 (IBM) population. In mapping this intermated recombinant inbred line population, we have contributed to development of a new high-resolution map resource for maize. The primer sequences, original sequence sources, data on polymorphisms across 11 inbred lines, and map positions have been integrated with information on other public SSR markers and released through MaizeDB at URL:www.agron.missouri.edu. The maize research community now has the most detailed and comprehensive SSR marker set of any plant species.


Assuntos
Mapeamento Cromossômico/métodos , Repetições de Microssatélites/genética , Zea mays/genética , Cromossomos/genética , Cruzamentos Genéticos , Polimorfismo Genético
10.
Comp Funct Genomics ; 3(2): 128-31, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-18628892

RESUMO

MaizeDB (http://www.agron.missouri.edu/) has existed since the early 90's as a genomespecific database that is grounded in genetic maps, their documentation and annotation. The database management system is robust and has continuously been Sybase. In this brief review we provide an introduction to the database as a functional genomics tool and new accesses to the data: 1) probe tables by bin location 2) BLAST access to map data 3) cMap, a comparative map graphical tool.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...