Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(25): e2207742, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37386790

RESUMO

Maturation of functional liquid-like biomolecular condensates into solid-like aggregates has been linked to the onset of several neurodegenerative disorders. Low-complexity aromatic-rich kinked segments (LARKS) contained in numerous RNA-binding proteins can promote aggregation by forming inter-protein ß-sheet fibrils that accumulate over time and ultimately drive the liquid-to-solid transition of the condensates. Here, atomistic molecular dynamics simulations are combined with sequence-dependent coarse-grained models of various resolutions to investigate the role of LARKS abundance and position within the amino acid sequence in the maturation of condensates. Remarkably, proteins with tail-located LARKS display much higher viscosity over time than those in which the LARKS are placed toward the center. Yet, at very long timescales, proteins with a single LARKS-independently of its location-can still relax and form high viscous liquid condensates. However, phase-separated condensates of proteins containing two or more LARKS become kinetically trapped due to the formation of percolated ß-sheet networks that display gel-like behavior. Furthermore, as a work case example, they demonstrate how shifting the location of the LARKS-containing low-complexity domain of FUS protein toward its center effectively precludes the accumulation of ß-sheet fibrils in FUS-RNA condensates, maintaining functional liquid-like behavior without ageing.


Assuntos
Proteínas de Ligação a RNA
2.
J Chem Phys ; 158(18)2023 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-37158636

RESUMO

Computational studies of liquid water and its phase transition into vapor have traditionally been performed using classical water models. Here, we utilize the Deep Potential methodology-a machine learning approach-to study this ubiquitous phase transition, starting from the phase diagram in the liquid-vapor coexistence regime. The machine learning model is trained on ab initio energies and forces based on the SCAN density functional, which has been previously shown to reproduce solid phases and other properties of water. Here, we compute the surface tension, saturation pressure, and enthalpy of vaporization for a range of temperatures spanning from 300 to 600 K and evaluate the Deep Potential model performance against experimental results and the semiempirical TIP4P/2005 classical model. Moreover, by employing the seeding technique, we evaluate the free energy barrier and nucleation rate at negative pressures for the isotherm of 296.4 K. We find that the nucleation rates obtained from the Deep Potential model deviate from those computed for the TIP4P/2005 water model due to an underestimation in the surface tension from the Deep Potential model. From analysis of the seeding simulations, we also evaluate the Tolman length for the Deep Potential water model, which is (0.091 ± 0.008) nm at 296.4 K. Finally, we identify that water molecules display a preferential orientation in the liquid-vapor interface, in which H atoms tend to point toward the vapor phase to maximize the enthalpic gain of interfacial molecules. We find that this behavior is more pronounced for planar interfaces than for the curved interfaces in bubbles. This work represents the first application of Deep Potential models to the study of liquid-vapor coexistence and water cavitation.

3.
Phys Rev Lett ; 130(11): 118001, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-37001068

RESUMO

Salty water is the most abundant electrolyte aqueous mixture on Earth, however, very little is known about the NaCl-saturated solution interfacial free energy (γ_{s}). Here, we provide the first direct estimation of γ_{s} for several NaCl crystallographic planes by means of the mold integration technique, a highly efficient computational method to evaluate interfacial free energies with anisotropic crystal resolution. Making use of the JC-SPC/E model, one of the most benchmarked force fields for NaCl water solutions, we measure γ_{s} of four different crystal planes, (100), (110), (111), and (112[over ¯]) with the saturated solution at normal conditions. We find high anisotropy between the different crystal orientations with values ranging from 100 to 150 mJ m^{-2}, and the average value of the distinct planes being γ[over ¯]_{s}=137(20) mJ m^{-2}. This value for the coexistence interfacial free energy is in reasonable agreement with previous extrapolations from nucleation studies. Our Letter represents a milestone in the computational calculation of interfacial free energies between ionic crystals and aqueous solutions.

4.
Biophys J ; 122(14): 2973-2987, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-36883003

RESUMO

Biomolecular condensates, thought to form via liquid-liquid phase separation of intracellular mixtures, are multicomponent systems that can include diverse types of proteins and RNAs. RNA is a critical modulator of RNA-protein condensate stability, as it induces an RNA concentration-dependent reentrant phase transition-increasing stability at low RNA concentrations and decreasing it at high concentrations. Beyond concentration, RNAs inside condensates can be heterogeneous in length, sequence, and structure. Here, we use multiscale simulations to understand how different RNA parameters interact with one another to modulate the properties of RNA-protein condensates. To do so, we perform residue/nucleotide resolution coarse-grained molecular dynamics simulations of multicomponent RNA-protein condensates containing RNAs of different lengths and concentrations, and either FUS or PR25 proteins. Our simulations reveal that RNA length regulates the reentrant phase behavior of RNA-protein condensates: increasing RNA length sensitively rises the maximum value that the critical temperature of the mixture reaches, and the maximum concentration of RNA that the condensate can incorporate before beginning to become unstable. Strikingly, RNAs of different lengths are organized heterogeneously inside condensates, which allows them to enhance condensate stability via two distinct mechanisms: shorter RNA chains accumulate at the condensate's surface acting as natural biomolecular surfactants, while longer RNA chains concentrate inside the core to saturate their bonds and enhance the density of molecular connections in the condensate. Using a patchy particle model, we additionally demonstrate that the combined impact of RNA length and concentration on condensate properties is dictated by the valency, binding affinity, and polymer length of the various biomolecules involved. Our results postulate that diversity on RNA parameters within condensates allows RNAs to increase condensate stability by fulfilling two different criteria: maximizing enthalpic gain and minimizing interfacial free energy; hence, RNA diversity should be considered when assessing the impact of RNA on biomolecular condensates regulation.


Assuntos
Condensados Biomoleculares , Simulação de Dinâmica Molecular , Termodinâmica , Temperatura , RNA
5.
J Chem Phys ; 157(13): 134501, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36209006

RESUMO

Colloidal systems possess unique features to investigate the governing principles behind liquid-to-solid transitions. The phase diagram and crystallization landscape of colloidal particles can be finely tuned by the range, number, and angular distribution of attractive interactions between the constituent particles. In this work, we present a computational study of colloidal patchy particles with high-symmetry bonding-six patches displaying octahedral symmetry-that can crystallize into distinct competing ordered phases: a cubic simple (CS) lattice, a body-centered cubic phase, and two face-centered cubic solids (orientationally ordered and disordered). We investigate the underlying mechanisms by which these competing crystals emerge from a disordered fluid at different pressures. Strikingly, we identify instances where the structure of the crystalline embryo corresponds to the stable solid, while in others, it corresponds to a metastable crystal whose nucleation is enabled by its lower interfacial free energy with the liquid. Moreover, we find the exceptional phenomenon that, due to a subtle balance between volumetric enthalpy and interfacial free energy, the CS phase nucleates via crystalline cubic nuclei rather than through spherical clusters, as the majority of crystal solids in nature. Finally, by examining growth beyond the nucleation stage, we uncover a series of alternating one-phase and two-phase crystallization mechanisms depending on whether or not the same phase that nucleates keeps growing. Taken together, we show that an octahedral distribution of attractive sites in colloidal particles results in an extremely rich crystallization landscape where subtle differences in pressure crucially determine the crystallizing polymorph.

6.
J Chem Phys ; 157(9): 094503, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36075712

RESUMO

Freezing of water is the most common liquid-to-crystal phase transition on Earth; however, despite its critical implications on climate change and cryopreservation among other disciplines, its characterization through experimental and computational techniques remains elusive. In this work, we make use of computer simulations to measure the nucleation rate (J) of water at normal pressure under different supercooling conditions, ranging from 215 to 240 K. We employ two different water models: mW, a coarse-grained potential for water, and TIP4P/ICE, an atomistic nonpolarizable water model that provides one of the most accurate representations of the different ice phases. To evaluate J, we apply the Lattice Mold technique, a computational method based on the use of molds to induce the nucleus formation from the metastable liquid under conditions at which observing spontaneous nucleation would be unfeasible. With this method, we obtain estimates of the nucleation rate for ice Ih and Ic and a stacking mixture of ice Ih/Ic, reaching consensus with most of the previously reported rates, although differing with some others. Furthermore, we confirm that the predicted nucleation rates obtained by the TIP4P/ICE model are in better agreement with experimental data than those obtained through the mW potential. Taken together, our study provides a reliable methodology to measure nucleation rates in a simple and computationally efficient manner that contributes to benchmarking the freezing behavior of two popular water models.

7.
Nat Commun ; 13(1): 5717, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175408

RESUMO

Biomolecular condensates, some of which are liquid-like during health, can age over time becoming gel-like pathological systems. One potential source of loss of liquid-like properties during ageing of RNA-binding protein condensates is the progressive formation of inter-protein ß-sheets. To bridge microscopic understanding between accumulation of inter-protein ß-sheets over time and the modulation of FUS and hnRNPA1 condensate viscoelasticity, we develop a multiscale simulation approach. Our method integrates atomistic simulations with sequence-dependent coarse-grained modelling of condensates that exhibit accumulation of inter-protein ß-sheets over time. We reveal that inter-protein ß-sheets notably increase condensate viscosity but does not transform the phase diagrams. Strikingly, the network of molecular connections within condensates is drastically altered, culminating in gelation when the network of strong ß-sheets fully percolates. However, high concentrations of RNA decelerate the emergence of inter-protein ß-sheets. Our study uncovers molecular and kinetic factors explaining how the accumulation of inter-protein ß-sheets can trigger liquid-to-solid transitions in condensates, and suggests a potential mechanism to slow such transitions down.


Assuntos
Proteínas de Ligação a RNA , RNA , Condensados Biomoleculares , Viscosidade
8.
PLoS Comput Biol ; 18(2): e1009810, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35108264

RESUMO

Biomolecular condensates formed via liquid-liquid phase separation (LLPS) play a crucial role in the spatiotemporal organization of the cell material. Nucleic acids can act as critical modulators in the stability of these protein condensates. To unveil the role of RNA length in regulating the stability of RNA binding protein (RBP) condensates, we present a multiscale computational strategy that exploits the advantages of a sequence-dependent coarse-grained representation of proteins and a minimal coarse-grained model wherein proteins are described as patchy colloids. We find that for a constant nucleotide/protein ratio, the protein fused in sarcoma (FUS), which can phase separate on its own-i.e., via homotypic interactions-only exhibits a mild dependency on the RNA strand length. In contrast, the 25-repeat proline-arginine peptide (PR25), which does not undergo LLPS on its own at physiological conditions but instead exhibits complex coacervation with RNA-i.e., via heterotypic interactions-shows a strong dependence on the length of the RNA strands. Our minimal patchy particle simulations suggest that the strikingly different effect of RNA length on homotypic LLPS versus RBP-RNA complex coacervation is general. Phase separation is RNA-length dependent whenever the relative contribution of heterotypic interactions sustaining LLPS is comparable or higher than those stemming from protein homotypic interactions. Taken together, our results contribute to illuminate the intricate physicochemical mechanisms that influence the stability of RBP condensates through RNA inclusion.


Assuntos
Condensados Biomoleculares , RNA , Fenômenos Biofísicos , RNA/química , Proteínas de Ligação a RNA
9.
Phys Chem Chem Phys ; 23(35): 19611-19626, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34524277

RESUMO

Hard-sphere crystallization has been widely investigated over the last six decades by means of colloidal suspensions and numerical methods. However, some aspects of its nucleation behaviour are still under debate. Here, we provide a detailed computational characterisation of the polymorphic nucleation competition between the face-centered cubic (fcc) and the hexagonal-close packed (hcp) hard-sphere crystal phases. By means of several state-of-the-art simulation techniques, we evaluate the melting pressure, chemical potential difference, interfacial free energy and nucleation rate of these two polymorphs, as well as of a random stacking mixture of both crystals. Our results highlight that, despite the fact that both polymorphs have very similar stability, the interfacial free energy of the hcp phase could be marginally higher than that of the fcc solid, which in consequence, mildly decreases its propensity to nucleate from the liquid compared to the fcc phase. Moreover, we analyse the abundance of each polymorph in grown crystals from different types of inserted nuclei: fcc, hcp and stacking disordered fcc/hcp seeds, as well as from those spontaneously emerged from brute force simulations. We find that post-critical crystals fundamentally grow maintaining the polymorphic structure of the critical nucleus, at least until moderately large sizes, since the only crystallographic orientation that allows stacking close-packed disorder is the fcc (111) plane, or equivalently the hcp (0001) one. Taken together, our results contribute with one more piece to the intricate puzzle of colloidal hard-sphere crystallization.

10.
Sci Rep ; 11(1): 15241, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315935

RESUMO

Biomolecular condensates are liquid-like membraneless compartments that contribute to the spatiotemporal organization of proteins, RNA, and other biomolecules inside cells. Some membraneless compartments, such as nucleoli, are dispersed as different condensates that do not grow beyond a certain size, or do not present coalescence over time. In this work, using a minimal protein model, we show that phase separation of binary mixtures of scaffolds and low-valency clients that can act as surfactants-i.e., that significantly reduce the droplet surface tension-can yield either a single drop or multiple droplets that conserve their sizes on long timescales (herein 'multidroplet size-conserved' scenario'), depending on the scaffold to client ratio. Our simulations demonstrate that protein connectivity and condensate surface tension regulate the balance between these two scenarios. The multidroplet size-conserved scenario spontaneously arises at increasing surfactant-to-scaffold concentrations, when the interfacial penalty for creating small liquid droplets is sufficiently reduced by the surfactant proteins that are preferentially located at the interface. In contrast, low surfactant-to-scaffold concentrations enable continuous growth and fusion of droplets without restrictions. Overall, our work proposes one thermodynamic mechanism to help rationalize how size-conserved coexisting condensates can persist inside cells-shedding light on the roles of protein connectivity, binding affinity, and droplet composition in this process.

11.
Biomolecules ; 11(2)2021 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-33672806

RESUMO

Biomolecular condensates, which assemble via the process of liquid-liquid phase separation (LLPS), are multicomponent compartments found ubiquitously inside cells. Experiments and simulations have shown that biomolecular condensates with many components can exhibit multilayered organizations. Using a minimal coarse-grained model for interacting multivalent proteins, we investigate the thermodynamic parameters governing the formation of multilayered condensates through changes in protein valency and binding affinity. We focus on multicomponent condensates formed by scaffold proteins (high-valency proteins that can phase separate on their own via homotypic interactions) and clients (proteins recruited to condensates via heterotypic scaffold-client interactions). We demonstrate that higher valency species are sequestered to the center of the multicomponent condensates, while lower valency proteins cluster towards the condensate interface. Such multilayered condensate architecture maximizes the density of LLPS-stabilizing molecular interactions, while simultaneously reducing the surface tension of the condensates. In addition, multilayered condensates exhibit rapid exchanges of low valency proteins in and out, while keeping higher valency proteins-the key biomolecules involved in condensate nucleation-mostly within. We also demonstrate how modulating the binding affinities among the different proteins in a multicomponent condensate can significantly transform its multilayered structure, and even trigger fission of a condensate into multiple droplets with different compositions.


Assuntos
Proteínas/química , Fenômenos Biofísicos , Extração Líquido-Líquido , Proteínas/isolamento & purificação , Termodinâmica
12.
Biophys J ; 120(7): 1219-1230, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33571491

RESUMO

Intracellular liquid-liquid phase separation enables the formation of biomolecular condensates, such as ribonucleoprotein granules, which play a crucial role in the spatiotemporal organization of biomolecules (e.g., proteins and RNAs). Here, we introduce a patchy-particle polymer model to investigate liquid-liquid phase separation of protein-RNA mixtures. We demonstrate that at low to moderate concentrations, RNA enhances the stability of RNA-binding protein condensates because it increases the molecular connectivity of the condensed-liquid phase. Importantly, we find that RNA can also accelerate the nucleation stage of phase separation. Additionally, we assess how the capacity of RNA to increase the stability of condensates is modulated by the relative protein-protein/protein-RNA binding strengths. We find that phase separation and multiphase organization of multicomponent condensates is favored when the RNA binds with higher affinity to the lower-valency proteins in the mixture than to the cognate higher-valency proteins. Collectively, our results shed light on the roles of RNA in ribonucleoprotein granule formation and the internal structuring of stress granules.


Assuntos
Organelas , RNA , Cinética , Proteínas de Ligação a RNA , Termodinâmica
13.
Soft Matter ; 17(3): 489-505, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33346291

RESUMO

Colloidal particles have been extensively used to comprehend the main principles governing liquid-crystal nucleation. Multiple mechanisms and frameworks have been proposed, through either experiments or computational approaches, to rationalise the ubiquitous formation of colloidal crystals. In this work, we elucidate the nucleation scenario behind the crystallization of oppositely charged colloids. By performing molecular dynamics simulations of colloidal electrolytes in combination with the Seeding technique, we evaluate the fundamental factors, such as the nucleation rate, free energy barrier, surface tension and kinetic pre-factor, that determine the liquid-to-solid transition of several crystalline polymorphs. Our results show that at a high packing fraction, there is a cross-over between the nucleation of the CsCl structure and that of a substitutionally disordered fcc phase, despite the CuAu crystal being the most stable phase. We demonstrate that the crucial factor in determining which phase nucleates the fastest is the free energy cost of the cluster formation rather than their kinetic ability to grow from the liquid. While at a low packing fraction, the stable phase, CsCl, is the one that nucleates and subsequently grows, we show how at moderate and high packing fractions, a disordered fcc phase subsequently grows regardless of the nature of the nucleating phase, termed parasitic crystallization. Taken together, our results provide a panoramic perspective of the complex nucleation scenario of oppositely charged colloids at moderate temperature and rationalise the different thermodynamic and kinetic aspects behind it.

14.
Molecules ; 25(20)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076213

RESUMO

Proteins containing intrinsically disordered regions (IDRs) are ubiquitous within biomolecular condensates, which are liquid-like compartments within cells formed through liquid-liquid phase separation (LLPS). The sequence of amino acids of a protein encodes its phase behaviour, not only by establishing the patterning and chemical nature (e.g., hydrophobic, polar, charged) of the various binding sites that facilitate multivalent interactions, but also by dictating the protein conformational dynamics. Besides behaving as random coils, IDRs can exhibit a wide-range of structural behaviours, including conformational switching, where they transition between alternate conformational ensembles. Using Molecular Dynamics simulations of a minimal coarse-grained model for IDRs, we show that the role of protein conformation has a non-trivial effect in the liquid-liquid phase behaviour of IDRs. When an IDR transitions to a conformational ensemble enriched in disordered extended states, LLPS is enhanced. In contrast, IDRs that switch to ensembles that preferentially sample more compact and structured states show inhibited LLPS. This occurs because extended and disordered protein conformations facilitate LLPS-stabilising multivalent protein-protein interactions by reducing steric hindrance; thereby, such conformations maximize the molecular connectivity of the condensed liquid network. Extended protein configurations promote phase separation regardless of whether LLPS is driven by homotypic and/or heterotypic protein-protein interactions. This study sheds light on the link between the dynamic conformational plasticity of IDRs and their liquid-liquid phase behaviour.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Extração Líquido-Líquido/métodos , Conformação Proteica , Sítios de Ligação/genética , Fenômenos Bioquímicos/genética , Interações Hidrofóbicas e Hidrofílicas , Proteínas Intrinsicamente Desordenadas/genética , Transição de Fase , Domínios Proteicos/genética
15.
Proc Natl Acad Sci U S A ; 117(24): 13238-13247, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32482873

RESUMO

One of the key mechanisms used by cells to control the spatiotemporal organization of their many components is the formation and dissolution of biomolecular condensates through liquid-liquid phase separation (LLPS). Using a minimal coarse-grained model that allows us to simulate thousands of interacting multivalent proteins, we investigate the physical parameters dictating the stability and composition of multicomponent biomolecular condensates. We demonstrate that the molecular connectivity of the condensed-liquid network-i.e., the number of weak attractive protein-protein interactions per unit of volume-determines the stability (e.g., in temperature, pH, salt concentration) of multicomponent condensates, where stability is positively correlated with connectivity. While the connectivity of scaffolds (biomolecules essential for LLPS) dominates the phase landscape, introduction of clients (species recruited via scaffold-client interactions) fine-tunes it by transforming the scaffold-scaffold bond network. Whereas low-valency clients that compete for scaffold-scaffold binding sites decrease connectivity and stability, those that bind to alternate scaffold sites not required for LLPS or that have higher-than-scaffold valencies form additional scaffold-client-scaffold bridges increasing stability. Proteins that establish more connections (via increased valencies, promiscuous binding, and topologies that enable multivalent interactions) support the stability of and are enriched within multicomponent condensates. Importantly, proteins that increase the connectivity of multicomponent condensates have higher critical points as pure systems or, if pure LLPS is unfeasible, as binary scaffold-client mixtures. Hence, critical points of accessible systems (i.e., with just a few components) might serve as a unified thermodynamic parameter to predict the composition of multicomponent condensates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...