Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 24(9): 102987, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34505005

RESUMO

Broadly neutralizing antibodies (bnAbs) against HIV-1 are frequently associated with the presence of autoreactivity/polyreactivity, a property that can limit their use as therapeutic agents. The bnAb 4E10, targeting the conserved Membrane proximal external region (MPER) of HIV-1, displays almost pan-neutralizing activity across globally circulating HIV-1 strains but exhibits nonspecific off-target interactions with lipid membranes. The hydrophobic apex of the third complementarity-determining region of the heavy chain (CDRH3) loop, which is essential for viral neutralization, critically contributes to this detrimental effect. Here, we have replaced the aromatic/hydrophobic residues from the apex of the CDRH3 of 4E10 with a single aromatic molecule through chemical modification to generate a variant that preserves the neutralization potency and breadth of 4E10 but with reduced autoreactivity. Collectively, our study suggests that the localized accumulation of aromaticity by chemical modification provides a pathway to ameliorate the adverse effects triggered by the CDRH3 of anti-HIV-1 MPER bnAbs.

2.
Cell Rep ; 32(7): 108037, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32814041

RESUMO

The contribution of membrane interfacial interactions to recognition of membrane-embedded antigens by antibodies is currently unclear. This report demonstrates the optimization of this type of antibodies via chemical modification of regions near the membrane but not directly involved in the recognition of the epitope. Using the HIV-1 antibody 10E8 as a model, linear and polycyclic synthetic aromatic compounds are introduced at selected sites. Molecular dynamics simulations predict the favorable interactions of these synthetic compounds with the viral lipid membrane, where the epitope of the HIV-1 glycoprotein Env is located. Chemical modification of 10E8 with aromatic acetamides facilitates the productive and specific recognition of the native antigen, partially buried in the crowded environment of the viral membrane, resulting in a dramatic increase of its capacity to block viral infection. These observations support the harnessing of interfacial affinity through site-selective chemical modification to optimize the function of antibodies that target membrane-proximal epitopes.


Assuntos
Anticorpos Neutralizantes/imunologia , Lipídeos de Membrana/imunologia , Humanos
3.
J Mol Biol ; 429(8): 1213-1226, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28300601

RESUMO

The exceptional breadth of broadly neutralizing antibodies (bNAbs) against the membrane-proximal external region (MPER) of the transmembrane protein gp41 makes this class of antibodies an ideal model to design HIV vaccines. From a practical point of view, however, the preparation of vaccines eliciting bNAbs is still a major roadblock that limits their clinical application. Fresh mechanistic insights are necessary to develop more effective strategies. In particular, the function of the unusually long complementarity-determining region three of the heavy chain (CDRH3) of 4E10, an anti-MPER bNAb, is an open question that fascinates researchers in the field. Residues comprising the apex region are dispensable for engagement of the epitope in solution; still, their single mutation profoundly impairs the neutralization capabilities of the antibody. Since this region is very hydrophobic, it has been proposed that the apex is essential for anchoring the antibody to the viral membrane where MPER resides. Herein, we have critically examined this idea using structural, biophysical, biochemical, and cell-based approaches. Our results demonstrate that the apex region is not just a "greasy" spot merely increasing the affinity of the antibody for the membrane. We demonstrate the three-dimensional engagement of the apex region of the CDRH3 with the conglomerate of gp41 epitope and membrane lipids as a means of effective binding and neutralization of the virus. This mechanism of recognition suggests a standard route of antibody ontogeny. Therefore, we need to focus our efforts on recreating a more realistic MPER/lipid immunogen in order to generate more effective anti-HIV-1 vaccines.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/metabolismo , Proteína gp41 do Envelope de HIV/metabolismo , HIV-1/imunologia , Anticorpos Monoclonais/genética , Anticorpos Amplamente Neutralizantes , Membrana Celular/metabolismo , Cristalografia por Raios X , Epitopos/química , Epitopos/metabolismo , Células HEK293 , Anticorpos Anti-HIV/genética , Proteína gp41 do Envelope de HIV/química , Humanos , Bicamadas Lipídicas , Triptofano
4.
J Gen Virol ; 97(10): 2769-2779, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27519423

RESUMO

In viruses, uncoating and RNA release are two key steps of successfully infecting a target cell. During these steps, the capsid must undergo the necessary conformational changes to allow RNA egress. Despite their importance, these processes are poorly understood in the family Dicistroviridae. Here, we used X-ray crystallography to solve the atomic structure of a Triatoma virus(TrV) empty particle (Protein Data Bank ID 5L7O), which is the resulting capsid after RNA release. It is observed that the overall shape of the capsid and of the three individual proteins is maintained in comparison with the mature virion. Furthermore, no channels indicative of RNA release are formed in the TrV empty particle. However, the most prominent change in the empty particle when compared with the mature virion is the loss of order in the N-terminal domain of the VP2 protein. In mature virions, the VP2 N-terminal domain of one pentamer is swapped with its twofold related copy in an adjacent pentamer, thereby stabilizing the binding between the pentamers. The loss of these interactions allows us to propose that RNA release may take place through transient flipping-out of pentameric subunits. The lower number of stabilizing interactions between the pentamers and the lack of formation of new holes support this model. This model differs from the currently accepted model for rhinoviruses and enteroviruses, in which genome externalization occurs by extrusion of the RNA through capsid channels.


Assuntos
Capsídeo/química , Dicistroviridae/química , RNA Viral/metabolismo , Triatoma/virologia , Vírion/química , Animais , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Cristalografia por Raios X , Dicistroviridae/genética , Dicistroviridae/metabolismo , Modelos Moleculares , RNA Viral/genética , Vírion/genética , Vírion/metabolismo
5.
J Virol ; 89(8): 4645-54, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25673713

RESUMO

UNLABELLED: In naked viruses, membrane breaching is a key step that must be performed for genome transfer into the target cells. Despite its importance, the mechanisms behind this process remain poorly understood. The small protein VP4, encoded by the genomes of most viruses of the order Picornavirales, has been shown to be involved in membrane alterations. Here we analyzed the permeabilization activity of the natively nonmyristoylated VP4 protein from triatoma virus (TrV), a virus belonging to the Dicistroviridae family within the Picornavirales order. The VP4 protein was produced as a C-terminal maltose binding protein (MBP) fusion to achieve its successful expression. This recombinant VP4 protein is able to produce membrane permeabilization in model membranes in a membrane composition-dependent manner. The induced permeability was also influenced by the pH, being greater at higher pH values. We demonstrate that the permeabilization activity elicited by the protein occurs through discrete pores that are inserted on the membrane. Sizing experiments using fluorescent dextrans, cryo-electron microscopy imaging, and other, additional techniques showed that recombinant VP4 forms heterogeneous proteolipidic pores rather than common proteinaceous channels. These results suggest that the VP4 protein may be involved in the membrane alterations required for genome transfer or cell entry steps during dicistrovirus infection. IMPORTANCE: During viral infection, viruses need to overcome the membrane barrier in order to enter the cell and replicate their genome. In nonenveloped viruses membrane fusion is not possible, and hence, other mechanisms are implemented. Among other proteins, like the capsid-forming proteins and the proteins required for viral replication, several viruses of the order Picornaviridae contain a small protein called VP4 that has been shown to be involved in membrane alterations. Here we show that the triatoma virus VP4 protein is able to produce membrane permeabilization in model membranes by the formation of heterogeneous dynamic pores. These pores formed by VP4 may be involved in the genome transfer or cell entry steps during viral infection.


Assuntos
Proteínas do Capsídeo/genética , Permeabilidade da Membrana Celular/genética , Dicistroviridae/genética , Infecções por Picornaviridae/fisiopatologia , Proteínas Recombinantes/genética , Internalização do Vírus , Sequência de Bases , Proteínas do Capsídeo/metabolismo , Clonagem Molecular , Microscopia Crioeletrônica , Primers do DNA/genética , Fluorescência , Concentração de Íons de Hidrogênio , Proteínas Ligantes de Maltose/genética , Proteínas Ligantes de Maltose/metabolismo , Dados de Sequência Molecular , Infecções por Picornaviridae/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA
6.
Parasit Vectors ; 8: 29, 2015 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-25595198

RESUMO

BACKGROUND: Chagas disease is caused by Trypanosoma cruzi, and humans acquire the parasite by exposure to contaminated feces from hematophagous insect vectors known as triatomines. Triatoma virus (TrV) is the sole viral pathogen of triatomines, and is transmitted among insects through the fecal-oral route and, as it happens with T. cruzi, the infected insects release the virus when defecating during or after blood uptake. METHODS: In this work, we analysed the occurrence of anti-TrV antibodies in human sera from Chagas disease endemic and non-endemic countries, and developed a mathematical model to estimate the transmission probability of TrV from insects to man, which ranged between 0.00053 and 0.0015. RESULTS: Our results confirm that people with Chagas disease living in Bolivia, Argentina and Mexico have been exposed to TrV, and that TrV is unable to replicate in human hosts. CONCLUSIONS: We presented the first experimental evidence of antibodies against TrV structural proteins in human sera.


Assuntos
Anticorpos Antivirais/sangue , Doença de Chagas/sangue , Dicistroviridae/imunologia , Triatoma/virologia , América/epidemiologia , Animais , Doença de Chagas/epidemiologia , Doença de Chagas/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Modelos Biológicos , Portugal/epidemiologia , Estudos Soroepidemiológicos , Proteínas Estruturais Virais/imunologia
7.
J Mater Chem B ; 3(16): 3169-3176, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32262310

RESUMO

Future progress in materials for tissue engineering and 3D cell cultures applications requires control of two key physical properties: nanoscale mechanical properties and mass transport. These requirements remain uncontrolled partly due to a lack of physical parameters and quantitative measurements. Using chitosan scaffolds as a model system in close-to-physiological conditions and a combination of experimental techniques and theory, we link structure with local nanomechanical properties. Additionally we introduce a parameter, the free volume, to predict variations in transport properties. By fabricating nanocomposites with single walled carbon nanotubes (SWNTs) we are able to test our approach: incorporation of acid-treated, soluble, ∼80 nm SWNTs in a chitosan matrix leads to a 2 fold increase in mean local elastic modulus and a decrease of 3% of the free volume available for oxygen diffusion. Inclusion of hydrophobic, ∼800 nm SWNTs leads to a 100 fold increase of elastic modulus and doubles the voids percentage available for the transport of glucose.

8.
J Gen Virol ; 96(Pt 1): 64-73, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25304655

RESUMO

In contrast to the current wealth of structural information concerning dicistrovirus particle structure, very little is known about their morphogenetic pathways. Here, we describe the expression of the two ORFs encoded by the Triatoma virus (TrV) genome. TrV, a member of the Cripavirus genus of the Dicistroviridae family, infects blood-sucking insects belonging to the Triatominae subfamily that act as vectors for the transmission of Trypanosoma cruzi, the aetiological agent of the Chagas disease. We have established a baculovirus-based model for the expression of the NS (non-structural) and P1 (structural) polyproteins. A preliminary characterization of the proteolytic processing of both polyprotein precursors has been performed using this system. We show that the proteolytic processing of the P1 polyprotein is strictly dependent upon the coexpression of the NS polyprotein, and that NS/P1 coexpression leads to the assembly of virus-like particles (VLPs) exhibiting a morphology and a protein composition akin to natural TrV empty capsids. Remarkably, the unprocessed P1 polypeptide assembles into quasi-spherical structures conspicuously larger than VLPs produced in NS/P1-coexpressing cells, likely representing a previously undescribed morphogenetic intermediate. This intermediate has not been found in members of the related Picornaviridae family currently used as a model for dicistrovirus studies, thus suggesting the existence of major differences in the assembly pathways of these two virus groups.


Assuntos
Dicistroviridae/genética , Poliproteínas/genética , Triatoma/genética , Proteínas não Estruturais Virais/genética , Proteínas Estruturais Virais/genética , Animais , Linhagem Celular , Genoma Viral/genética , Trypanosoma cruzi/virologia
9.
Virology ; 409(1): 91-101, 2011 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-21030058

RESUMO

Triatoma virus (TrV) is a non-enveloped +ssRNA virus belonging to the insect virus family Dicistroviridae. Mass spectrometry (MS) and gel electrophoresis were used to detect the previously elusive capsid protein VP4. Its cleavage sites were established by sequencing the N-terminus of the protein precursor and MS, and its stoichiometry with respect to the other major capsid proteins (VP1-3) was found to be 1:1. We also characterized the polypeptides comprising the naturally occurring non-infectious empty capsids, i.e., RNA-free TrV particles. The empty particles were composed of VP0-VP3 plus at least seven additional polypeptides, which were identified as products of the capsid precursor polyprotein. We conclude that VP4 protein appears as a product of RNA encapsidation, and that defective processing of capsid proteins precludes genome encapsidation.


Assuntos
Proteínas do Capsídeo/metabolismo , Dicistroviridae/metabolismo , Triatoma/virologia , Vírion/ultraestrutura , Animais , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Dicistroviridae/genética , Dicistroviridae/ultraestrutura , Eletroforese em Gel de Ágar , Espectrometria de Massas , Microscopia Eletrônica de Transmissão , Triatoma/ultraestrutura , Vírion/metabolismo , Montagem de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...