Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 333: 117462, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36758413

RESUMO

In the Mediterranean arid region such as Southeast (SE) Spain, a considerable part of the fluvial network runs permanently dry. Here, many dry watercourses are embedded in catchments where agriculture has brought changes in carbon (C) and nitrogen (N) availability due to native riparian vegetation removal and the establishment of intensive agriculture. Despite their increasing scientific recognition and vulnerability, our knowledge about dry riverbeds biogeochemistry and environmental drivers is still limited, moreover for developing proper management plans at the whole catchment scale. We examined CO2 and N2O emissions in five riverbeds in SE Spain of variable agricultural impact under dry and simulated rewetted conditions. Sediment denitrifying capacity upon rewetting was also assessed. We found that, regardless of agricultural impact, all riverbeds can emit CO2 under dry and wet conditions. Emissions of N2O were only observed in our study when a long-term rewetting driving saturated sediments was conducted. Besides, most biogeochemical capabilities were enhanced in summer, reflecting the sensitiveness of microbial activity to temperature. Biogeochemical processing variation across rivers appeared to be more controlled by availability of sediment organic C, rather than by agriculturally derived nitrate. We found that the studied dry riverbeds, agriculturally affected or not, may be active sources of CO2 and contribute to transitory N2O emissions during rewetting phenomena, potentially through denitrification. We propose that management plans aiming to support ecosystem biogeochemistry through organic C from native vegetation rather than agricultural exudates would help to reduce anthropogenic greenhouse gases emissions and excess of nutrients in the watershed and to control the nitrate inputs to coastal ecosystems.


Assuntos
Carbono , Nitrogênio , Nitrogênio/análise , Ecossistema , Nitratos , Dióxido de Carbono/análise , Agricultura , Compostos Orgânicos , Óxido Nitroso/análise , Solo
2.
Waste Manag ; 158: 76-83, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36641823

RESUMO

Different activation and N-doping treatments were used to produce biochar-based fertilizers (BBFs) with increased N concentration and slow N release. Pristine biochars were produced by pyrolysis of olive tree pruning feedstock at low and high temperatures (400 and 800 °C). These biochars were activated either by ultrasonication, or oxidation with hydrogen peroxide (H2O2) or nitric acid (HNO3) to increase their N retention potential. Subsequently biochars were enriched with N with either urea or ammonium sulfate. The activation of low-temperature biochars with HNO3 was the most effective treatment leading to new surface carboxylic groups that facilitated the later enrichment with N. When treated with urea, BBFs reached 7.0 N%, whereas the H2O2 activation only allowed an increase up to 2.0 N%. The use of urea as the external N source was the most efficient for incorporating N. Urea treated biochars had a water-soluble fraction that represented up to 14.5 % of the total N. The hydrolyzable N fraction, composed by amides and simple N heterocycles originated by the N-doping treatments, and nitro groups generated from HNO3 activation, represented up to 60 % of the total N. This study relates the N chemical forms in the new BBFs to potential N availability in soil. The presence of water-soluble, hydrolyzable and non-hydrolyzable N implied that these BBFs may supply N that would be progressively available for plants, acting as slow-release fertilizers.


Assuntos
Fertilizantes , Nitrogênio , Fertilizantes/análise , Peróxido de Hidrogênio , Carvão Vegetal , Solo , Ureia , Água
3.
Front Plant Sci ; 13: 932311, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330258

RESUMO

Current and continuing climate change in the Anthropocene epoch requires sustainable agricultural practices. Additionally, due to changing consumer preferences, organic approaches to cultivation are gaining popularity. The global market for organic grapes, grape products, and wine is growing. Biostimulant and biocontrol products are often applied in organic vineyards and can reduce the synthetic fertilizer, pesticide, and fungicide requirements of a vineyard. Plant growth promotion following application is also observed under a variety of challenging conditions associated with global warming. This paper reviews different groups of biostimulants and their effects on viticulture, including microorganisms, protein hydrolysates, humic acids, pyrogenic materials, and seaweed extracts. Of special interest are biostimulants with utility in protecting plants against the effects of climate change, including drought and heat stress. While many beneficial effects have been reported following the application of these materials, most studies lack a mechanistic explanation, and important parameters are often undefined (e.g., soil characteristics and nutrient availability). We recommend an increased study of the underlying mechanisms of these products to enable the selection of proper biostimulants, application methods, and dosage in viticulture. A detailed understanding of processes dictating beneficial effects in vineyards following application may allow for biostimulants with increased efficacy, uptake, and sustainability.

4.
Environ Pollut ; 307: 119546, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35644431

RESUMO

Little is known about the effect of biochar on the degradation of paracetamol in soil, considering the ubiquity of this pollutant in the environment. Given the importance of the electrochemical properties of biochar for contaminant remediation, we investigated the influence of raw and designer redox-active biochars on paracetamol degradation in soil. Metabolite quantification indicated that a minimum of 53% of the spiked paracetamol was transformed in biochar-amended soil, resulting in the accumulation of different degradation products. The identification of these products allowed us to chart paracetamol degradation pathways in soil with and without biochar amendment. Some of the major degradation routes were observed to proceed via catechol and phenol, despite being previously described as having only a minor role in paracetamol metabolism. Additionally, a new transformation route from paracetamol to NAPQI was discovered in anaerobic soil originating from direct redox reactions on the surface of the designer biochars. These results may contribute to change our understanding of the environmental fate of paracetamol in soil and the role of biochar in its biodegradation.


Assuntos
Recuperação e Remediação Ambiental , Poluentes do Solo , Acetaminofen , Carvão Vegetal/química , Solo/química , Poluentes do Solo/análise
5.
J Hazard Mater ; 426: 127805, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34823948

RESUMO

In this study, we produced modified biochars with enhanced electrochemical properties to increase PCP remediation in soil. Although all biochars enhanced PCP remediation in aerobic conditions, only a few did in anaerobic soil. The most successful modifications were (i) the preloading of biomass with 10% w/w FeCl3, to obtain a biochar rich in redox-active metals (B-Fe); (ii) the oxidation of a conductive biochar pyrolyzed at 1000 ºC with 0.025 M KMnO4, to produce a biochar with both moderate conductivity and redox capacity (B-1000-KMnO4); and (iii) KMnO4 oxidation of an amorphous biochar pyrolyzed at 400 ºC to obtain a biochar with very high redox capacity (B-KMnO4). B-Fe reduced extractable PCP to almost zero after 50 days in both incubations, but showed slow kinetics of remediation in aerobic soil. B-1000-KMnO4 had the highest rate of remediation under aerobic conditions, but no significant effect under anaerobic conditions. B-KMnO4, however, presented high rates of remediation and high removal of extractable PCP under both conditions, which made it the recommended modification strategy for increased PCP remediation. We found that the degree of remediation primarily depends on the redox capacity, while the rate of remediation was determined by both the conductivity and redox capacity of biochar.


Assuntos
Recuperação e Remediação Ambiental , Pentaclorofenol , Poluentes do Solo , Carvão Vegetal , Solo , Poluentes do Solo/análise
6.
FEMS Microbiol Ecol ; 96(8)2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32602887

RESUMO

Biochar (BC) has been shown to influence microbial denitrification and mitigate soil N2O emissions. However, it is unclear if BC is able to directly stimulate the microbial reduction of N2O to N2. We hypothesized that the ability of BC to lower N2O emissions could be related not only to its ability to store electrons, but to donate them to bacteria that enzymatically reduce N2O. Therefore, we carried out anoxic incubations with Paracoccus denitrificans, known amounts of N2O, and nine contrasting BCs, in the absence of any other electron donor or acceptor. We found a strong and direct correlation between the extent and rates of N2O reduction with BC's EDC/EEC (electron donating capacity/electron exchange capacity). Apart from the redox capacity, other BC properties were found to regulate the BC's ability to increase N2O reduction by P. denitrificans. For this specific BC series, we found that a high H/C and ash content, low surface area and poor lignin feedstocks favored N2O reduction. This provides valuable information for producing tailored BCs with the potential to assist and promote the reduction of N2O in the pursuit of reducing this greenhouse gas emissions.


Assuntos
Paracoccus denitrificans , Carvão Vegetal , Desnitrificação , Elétrons , Óxido Nitroso/análise , Solo
7.
Front Plant Sci ; 11: 426, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528482

RESUMO

The demand for biostimulants has been growing at an annual rate of 10 and 12.4% in Europe and Northern America, respectively. The beneficial effects of humic substances (HS) as biostimulants of plant growth have been well-known since the 1980s, and they can be supportive to a circular economy if they are extracted from different renewable resources of organic matter including harvest residues, wastewater, sewage sludge, and manure. This paper presents an overview of the scientific outputs on application methods of HS in different conditions. Firstly, the functionality of HS in the primary and secondary metabolism under stressed and non-stressed cropping conditions is discussed along with crop protection against pathogens. Secondly, the advantages and limitations of five different types of HS application under open-fields and greenhouse conditions are described. Key factors, such as the chemical structure of HS, application method, optimal rate, and field circumstances, play a crucial role in enhancing plant growth by HS treatment as a biostimulant. If we can get a better grip on these factors, HS has the potential to become a part of circular agriculture.

8.
Sci Total Environ ; 616-617: 960-969, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29096960

RESUMO

Biochar (BC) is gaining attention as a soil amendment that can remediate metal polluted soils. The simultaneous effects of BC on copper (Cu) mobility, microbial activities in soil using metallophytes have scarcely been addressed. The objective of this study was to evaluate the effects of biochar BCs on Cu immobilization and over soil microbial communities in a Cu-contaminated soil evaluated over a two-year trial. A Cu-contaminated soil (338mgkg-1) was incubated with chicken manure biochar (CMB) or oat hull biochar (OHB) at rates of 1 and 5% w/w. Metallophyte Oenothera picensis was grown over one season (six months). The above process was repeated for 3 more consecutive seasons using the same soils. The BCs increased the soil pH and decreased the Cu exchangeable fraction Cu by 5 and 10 times (for OHB and CMB, respectively) by increasing the Cu bound in organic matter and residual fractions, and its effects were consistent across all seasons evaluated. BCs provided favorable habitat for microorganisms that was evident in increased microbial activity. The DHA activity was increased in all BC treatments, reaching a maximum of 7 and 6 times higher than control soils in CMB and OHB. Similar results were observed in microbial respiration, which increased 53% in OHB and 61% in CMB with respect to control. The BCs produced changes in microbial communities in all seasons evaluated. The fungal and bacterial richness were increased by CMB and OHB treatments; however, no clear effects were observed in the microbial diversity estimators. The physiochemical and microbiological effects produced by BC result in an increase of plant biomass production, which was on average 3 times higher than control treatments. However, despite being a metallophyte, O. picensis did not uptake Cu efficiently. Root and shoot Cu concentrations decreased or changed insignificantly in most BC treatments.


Assuntos
Carvão Vegetal/química , Cobre/análise , Microbiologia do Solo , Poluentes do Solo/análise , Solo/química , Bactérias/metabolismo , Cobre/química , Poluição Ambiental/estatística & dados numéricos , Fungos/metabolismo , Poluentes do Solo/química
9.
PLoS One ; 12(5): e0176884, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28493951

RESUMO

Biochar production and use are part of the modern agenda to recycle wastes, and to retain nutrients, pollutants, and heavy metals in the soil and to offset some greenhouse gas emissions. Biochars from wood (eucalyptus sawdust, pine bark), sugarcane bagasse, and substances rich in nutrients (coffee husk, chicken manure) produced at 350, 450 and 750°C were characterized to identify agronomic and environmental benefits, which may enhance soil quality. Biochars derived from wood and sugarcane have greater potential for improving C storage in tropical soils due to a higher aromatic character, high C concentration, low H/C ratio, and FTIR spectra features as compared to nutrient-rich biochars. The high ash content associated with alkaline chemical species such as KHCO3 and CaCO3, verified by XRD analysis, made chicken manure and coffee husk biochars potential liming agents for remediating acidic soils. High Ca and K contents in chicken manure and coffee husk biomass can significantly replace conventional sources of K (mostly imported in Brazil) and Ca, suggesting a high agronomic value for these biochars. High-ash biochars, such as chicken manure and coffee husk, produced at low-temperatures (350 and 450°C) exhibited high CEC values, which can be considered as a potential applicable material to increase nutrient retention in soil. Therefore, the agronomic value of the biochars in this study is predominantly regulated by the nutrient richness of the biomass, but an increase in pyrolysis temperature to 750°C can strongly decrease the adsorptive capacities of chicken manure and coffee husk biochars. A diagram of the agronomic potential and environmental benefits is presented, along with some guidelines to relate biochar properties with potential agronomic and environmental uses. Based on biochar properties, research needs are identified and directions for future trials are delineated.


Assuntos
Agricultura , Biomassa , Carvão Vegetal/química , Meio Ambiente , Madeira/química , Animais , Carbono/análise , Galinhas , Café/química , Condutividade Elétrica , Concentração de Íons de Hidrogênio , Esterco/análise , Saccharum/química , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Volatilização , Água/química , Difração de Raios X
10.
Waste Manag ; 49: 545-552, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26786401

RESUMO

Application of biochar (10% v/v) to a manure composting matrix was investigated to evaluate its effect on the chemical composition of humic substances during the composting process. The characteristics of the humic acid (HA) and fulvic acid (FA) fractions were analyzed in compost mixtures originating from two different manures (poultry manure (PM) and cow manure (CM)). The C contents of HA and FA from the manure compost/biochar blends (PM+B and CM+B) were higher than those from PM and CM, with an enhanced recalcitrant fraction, as determined by thermogravimetric analysis. Spectroscopic analysis showed that enrichment of aromatic-C and carboxylic-C occurred in the FA fractions of PM+B and CM+B to a greater extent than in PM and CM. Biochar addition into the composting mixture improved the final compost quality, especially for the light humified fraction (FA).


Assuntos
Benzopiranos/análise , Carvão Vegetal/análise , Substâncias Húmicas/análise , Esterco/análise , Gerenciamento de Resíduos , Animais , Benzopiranos/química , Bovinos , Carvão Vegetal/química , Espectroscopia de Ressonância Magnética , Aves Domésticas , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
11.
Waste Manag ; 49: 553-559, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26777305

RESUMO

The use of biochar has been revealed to have beneficial effects during the composting of manures and other N-rich materials by reducing N losses and enhancing the rate of the process. However, the impact of biochar has not been explored in other complex organic matrices with low N nitrogen that may hinder the composting process. The main novelty of this work was to study the impact of a small amount of biochar (4%) on the composting process of olive mill wastes, which are characterised by a recalcitrant lignocellulosic composition with reduced nitrogen (N) availability. Two treatments: (i) control (olive mill waste 46%+sheep manure 54%, dry weight) and (ii) the same mixture treated with biochar (4%), were composted during 31 weeks. The incorporation of a small amount of biochar improved N cycling by increasing NO3(-)-N content, indicating a higher nitrifying activity, and reducing N losses by 15% without affecting the amount of N2O released. The use of biochar as an additive for composting could improve the value of olive mill waste composts by reducing N losses and increasing N availability in lignocellulosic and N-poor materials.


Assuntos
Carvão Vegetal/análise , Resíduos Industriais/análise , Esterco/análise , Ciclo do Nitrogênio , Animais , Nitrogênio/metabolismo , Olea , Ovinos
12.
Chemosphere ; 142: 14-23, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26044389

RESUMO

Two experiments were conducted where three biochars, made from macadamia nutshell (MS), hardwood shaving (WS) and chicken litter (CL), were co-composted with chicken manure and sawdust, and also incubated with a chicken litter based commercial compost. Biochars were added at the rates of 5% and 10% in the co-composting and 10% and 20% in the incubation experiment. The rates of biochar had no consistent effect on the change in element contents of composted- or incubated-biochars. The biochar C demonstrated recalcitrance in both composting and incubation systems. Composting increased the CEC of biochars probably due to thermophilic oxidation. The increases in CEC of WS and CL were 6.5 and 2.2 times, respectively, for composting. Translocation of elements, between biochar and compost medium, occurred in both directions. In most cases, biochars gained elements under the influence of positive difference of concentrations (i.e., when compost medium had higher concentration of elements than biochar), while in some cases they lost elements despite a positive difference. Biochar lost some elements (WS: B; CL: B, Mg and S) under the influence of negative difference of concentrations. Some biochars showed strong affinity for B, C, N and S: the concentration of these elements gained by biochars surpassed the concentration in the respective composting medium. The material difference in the biochars did not have influence on N retention: all three netbag-biochars increased their N content. The cost of production of biochar-compost will be lower in co-composting than incubation, which involves two separate processes, i.e., composting and subsequent incubation.


Assuntos
Carvão Vegetal/química , Galinhas , Esterco/análise , Solo/química , Resíduos , Animais , Compostos Orgânicos/química , Compostos Orgânicos/metabolismo , Madeira/química , Madeira/metabolismo , Madeira/microbiologia
13.
Waste Manag ; 34(7): 1139-47, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24810202

RESUMO

Composting is a method for preparing organic fertilizers that represents a suitable management option for the recycling of two-phase olive mill waste (TPOMW) in agriculture. Four different composts were prepared by mixing TPOMW with different agro-industrial by-products (olive pruning, sheep manure and horse manure), which were used either as bulking agents or as N sources. The mature composts were added during six consecutive years to a typical "Picual" olive tree grove in the Jaén province (Spain). The effects of compost addition on soil characteristics, crop yield and nutritional status and also the quality of the olive oil were evaluated at the end of the experiment and compared to a control treated only with mineral fertilization. The most important effects on soil characteristics included a significant increase in the availability of N, P, K and an increase of soil organic matter content. The application of TPOMW compost produced a significant increase in olive oil content in the fruit. The compost amended plots had a 15% higher olive oil content than those treatment with inorganic fertilization. These organics amendments maintained the composition and quality of the olive oil.


Assuntos
Fertilizantes/análise , Resíduos Industriais/análise , Olea/fisiologia , Solo/química , Gerenciamento de Resíduos , Animais , Frutas/química , Cavalos , Esterco , Olea/crescimento & desenvolvimento , Azeite de Oliva , Óleos de Plantas/análise , Estações do Ano , Ovinos , Espanha
14.
Bioresour Technol ; 168: 245-51, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24666624

RESUMO

Several maturity indices were evaluated for in-vessel co-composting of chicken manure and pine sawdust with three different biochars. All the seven mixtures (piles) contained chicken manure and sawdust. Six of these piles contained biochar; each biochar was added at two rates, 5% and 10% wet weight. The maturity of composts was assessed by C/N, dissolved organic carbon (DOC), seed germination, NO3(-)-N/NH4(+)-N, and the Solvita test. The C/N values of finished composts were from 31.5 to 35.7, which were much higher than the optimum value of 21 for matured compost. Nevertheless, the rest of the parameters indicated that the composts were matured. The C/N values were high because of the high amount of recalcitrant carbon present in the feedstocks: biochar and sawdust. Biochar treated piles showed higher respiration as well as decomposition of DOC indicating higher microbial activity. Use of biochar in composting may reduce NH3 emission and nitrate leaching.


Assuntos
Carvão Vegetal/química , Esterco/análise , Solo , Madeira/química , Compostos de Amônio/análise , Animais , Carbono/análise , Dióxido de Carbono/análise , Galinhas , Germinação , Lepidium/crescimento & desenvolvimento , Nitratos/análise , Nitrogênio/análise , Temperatura
15.
Sci Total Environ ; 470-471: 536-42, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24176701

RESUMO

Traditional methods to evaluate the stability and maturity of organic wastes and composting matrices are laborious, time-consuming and generate laboratory chemical wastes. This study focused on the development of partial least square (PLS) regression models for the prediction of the stability and maturity of compost-based substrates based on Fourier transform infrared (FTIR) spectroscopy. The following parameters, selected as conventional maturity indexes, were modeled and used as dataset: dissolved organic carbon (DOC), C/N and NH4(+)/NO3(-) ratios, cation exchange capacity (CEC), degree of polymerization (DP), percentage of humic acid (PHA), humification index (HI) and humification ratio (HR). Models were obtained by using data from a wide range of compost based growing media of diverse origin and composition, including 4 commercially available substrates and 11 substrates prepared in our facilities with varying proportions of different organic wastes. The PLS models presented correlation coefficient of calibration (R(2)cal) close to 0.90 and correlation coefficient (R(2)) of cross validation (R(2)cv) presented acceptable values (>0.6), ranging from 0.67 (HR) to 0.92 (C/N). The good performance of the method was also confirmed by the low correlation obtained from the Y-randomization test. R(2) for test samples (R(2)pred) ranged from 0.66 (C/N) to 0.97 (HI) confirming the good correlation between measured and PLS predicted maturity indexes. FTIR spectroscopy combined with PLS regression represents, after modeling process, a fast and alternative method to assess substrate maturity and stability with reduction of time, lower generation of laboratory chemical wastes residues and lower cost per sample than conventional chemical methods. All models adjusted for maturity indexes are predictive, robust and did not present chance correlation.


Assuntos
Recuperação e Remediação Ambiental/estatística & dados numéricos , Substâncias Húmicas , Modelos Químicos , Recuperação e Remediação Ambiental/métodos , Análise dos Mínimos Quadrados , Espectroscopia de Infravermelho com Transformada de Fourier
16.
Chemosphere ; 93(10): 2311-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24034827

RESUMO

Solid phase microextraction (SPME) is a fast, cheap and solvent free methodology widely used for environmental analysis. A SPME methodology has been optimized for the analysis of VOCs in a range of matrices covering different soils of varying textures, organic matrices from manures and composts from different origins, and biochars. The performance of the technique was compared for the different matrices spiked with a multicomponent VOC mixture, selected to cover different VOC groups of environmental relevance (ketone, terpene, alcohol, aliphatic hydrocarbons and alkylbenzenes). VOC recovery was dependent on the nature itself of the VOC and the matrix characteristics. The SPME analysis of non-polar compounds, such as alkylbenzenes, terpenes and aliphatic hydrocarbons, was markedly affected by the type of matrix as a consequence of the competition for the adsorption sites in the SPME fiber. These non-polar compounds were strongly retained in the biochar surfaces limiting the use of SPME for this type of matrices. However, this adsorption capacity was not evident when biochar had undergone a weathering/aging process through composting. Polar compounds (alcohol and ketone) showed a similar behavior in all matrices, as a consequence of the hydrophilic characteristics, affected by water content in the matrix. SPME showed a good performance for soils and organic matrices especially for non-polar compounds, achieving a limit of detection (LD) and limit of quantification (LQ) of 0.02 and 0.03 ng g(-1) for non-polar compounds and poor extraction for more hydrophilic and polar compounds (LD and LQ higher 310 and 490 ng g(-1)). The characteristics of the matrix, especially pH and organic matter, had a marked impact on SPME, due to the competition of the analytes for active sites in the fiber, but VOC biodegradation should not be discarded in matrices with active microbial biomass.


Assuntos
Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Microextração em Fase Sólida/métodos , Compostos Orgânicos Voláteis/análise , Poluentes Ambientais/química , Compostos Orgânicos Voláteis/química
17.
Sci Rep ; 3: 1732, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23615819

RESUMO

Agricultural soils represent the main source of anthropogenic N2O emissions. Recently, interactions of black carbon with the nitrogen cycle have been recognized and the use of biochar is being investigated as a means to reduce N2O emissions. However, the mechanisms of reduction remain unclear. Here we demonstrate the significant impact of biochar on denitrification, with a consistent decrease in N2O emissions by 10-90% in 14 different agricultural soils. Using the (15)N gas-flux method we observed a consistent reduction of the N2O/(N2 + N2O) ratio, which demonstrates that biochar facilitates the last step of denitrification. Biochar acid buffer capacity was identified as an important aspect for mitigation that was not primarily caused by a pH shift in soil. We propose the function of biochar as an "electron shuttle" that facilitates the transfer of electrons to soil denitrifying microorganisms, which together with its liming effect would promote the reduction of N2O to N2.


Assuntos
Carvão Vegetal/química , Óxido Nitroso/química , Solo/química , Agricultura/métodos , Desnitrificação , Gases/química , Nitrogênio/química
18.
J Basic Microbiol ; 53(7): 617-21, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22915326

RESUMO

CH(4) is known to be generated during the most active phase of composting, even in well-managed composting piles. In this manuscript, we studied the influence of biochar on the CH(4) metabolism during composting of cattle manure and local organic wastes. We evaluated the presence of methanogens and methanotrophs in the composting piles quantified by the level of mcrA encoding methyl coenzyme M reductase alpha subunit and pmoA encoding particulate methane monooxygenase. A decrease of methanogens (mcrA) and an increase of methanotrophs (pmoA) were measured in the composting mixture containing biochar during the most active phase of composting. During the thermophilic phase, the mcrA/pmoA ratios obtained in the composting piles with biochar were twofold lower than in the pile without biochar.


Assuntos
Carvão Vegetal/metabolismo , Metano/metabolismo , Temperatura , Animais , Bovinos , Carvão Vegetal/química , Esterco/microbiologia , Oxirredutases/metabolismo , Solo
19.
Chemosphere ; 88(2): 196-203, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22464856

RESUMO

Nitrogen availability plays a critical role in the biodegradation of organic matter during composting. Although the optimal initial C/N is known to be around 25-30, the chemical form in which N is present influences microbial activity and therefore degradation rate and gaseous losses. This study was conducted to evaluate the influence of N availability on the composting of a mixture of lignocellulosic materials. Three composting piles were made of a mixture of wheat straw and cotton waste, each pile containing different N-rich animal by-products. The evolution of the main physico-chemical parameters was monitored (temperature, pH, electrical conductivity, C/N, NH(4)(+), NO(3)(-), water soluble C and N) as well as the enzymatic activity related to the cycle of the main nutrients (ß-glucosidase, protease, alkaline phosphatase and fluorescein diacetate hydrolysis). Additionally, fluxes of CO(2), CH(4) and N(2)O emitted from the composting piles were measured by the closed-chamber technique. Cumulative CO(2) emissions were fitted to five different kinetic models with biological significance to C mineralization data. The application of the different N-rich residues had a significant effect on the C and N dynamics during composting. However, most enzymatic activities followed similar patterns in the three piles. The major CO(2) fluxes were recorded during the thermophilic phase, showing a direct relationship with temperature peaks. No CH(4) fluxes were detected for any of the composting piles during the whole trial, whereas low N(2)O emissions were found at the early beginning and during the maturation stage.


Assuntos
Poluentes Atmosféricos/análise , Lignina/metabolismo , Nitrogênio/análise , Poluentes do Solo/análise , Solo/química , Poluentes Atmosféricos/metabolismo , Amônia/análise , Amônia/metabolismo , Biodegradação Ambiental , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Efeito Estufa , Lignina/análise , Metano/análise , Metano/metabolismo , Nitratos/análise , Nitratos/metabolismo , Nitrogênio/metabolismo , Dióxido de Nitrogênio/análise , Dióxido de Nitrogênio/metabolismo , Eliminação de Resíduos , Poluentes do Solo/metabolismo
20.
Bioresour Technol ; 110: 396-404, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22377478

RESUMO

The aim of this study was to assess the effect of a 2% (v/v) addition of biochar on the quality of a composting mixture prepared with poultry manure and different local organic wastes (rice husk and apple pomace). Compost quality was evaluated in terms of typical stabilisation indices, the microbial biomass and selected enzymatic activities related to the C, N and P cycles. The main effects of biochar were a 10% increase in C captured by humic substance extraction and a 30% decrease of water-soluble C, due to an enhanced degradation rate and/or the sorption of these labile compounds into the biochar. The urease, phosphatase and polyphenol oxidase activities of the biochar-blended compost were enhanced by 30-40% despite the lower amount of microbial biomass. Denaturing gradient gel electrophoresis revealed a higher diversity of fungi in biochar-amended compost, suggesting a change in microbial composition compared to the unamended compost.


Assuntos
Esterco , Aves Domésticas , Solo , Animais , Biomassa , Catecol Oxidase/metabolismo , Hidrólise , Monoéster Fosfórico Hidrolases/metabolismo , Urease/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...